京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2021, Vol. 35 ›› Issue (9): 136-146.DOI: 10.19491/j.issn.1001-9278.2021.09.021
• Review • Previous Articles Next Articles
WEI Zongchen1, XI Yuewei1,2(), WENG Yunxuan1,2(
)
Received:
2021-01-12
Online:
2021-09-26
Published:
2021-09-23
CLC Number:
WEI Zongchen, XI Yuewei, WENG Yunxuan. Research Progress in Poly(lactic acid)⁃based Composite Materials for Bone Tissue Engineering[J]. China Plastics, 2021, 35(9): 136-146.
材料分类 | 产品 | 优势 | 缺陷 |
---|---|---|---|
金属基骨组织修复材料 | 主要有镍铬不锈钢、钴铬钼合金和钛及其合金,如骨钉、骨板、人工关节、人工血管和人工晶状体等。 | 耐蚀性和化学稳定性,力学上具有适宜的强度、韧性、耐磨性和耐疲劳性能,易加工成各种复杂形状,价格便宜和使用方便。 | 生物惰性材料不与组织相结合,既不能被吞噬系统所吞噬,也无法作为异物被排出体外。 |
无机非金属基骨组织修复材料 | 生物活性玻璃、生物陶瓷、可吸收缝合线等多种生物活性材料。 | 具备生物活性,即材料本身无毒,又具有高度的生物相容性,且在体内可促进缺损组织再生。 | 与金属基材料相比,无机非金属材料可塑性较差,力学性能不佳,成型性也较差。 |
高分子基骨组织修复材料 | 由PLA、橡胶、聚乙烯、聚丙烯等可降解和不可降解高分子制备的人工心脏瓣膜、人工骨等。 | 分子键较强,具有较高的化学稳定性、力学强度、可加工性和耐磨损性能。 | 大部分高分子基材料没有生物活性,部分高分子可能引起炎症及免疫反应。 |
有机/无机复合骨组织修复材料 | 组织工程支架材料、原位组织再生材料、可降解复合细胞和(或)生长因子材料等。 | 有机材料与无机材料相结合,既具备生物活性,又具备较好的力学性能。 | 制备难度高,相比其他的材料运用范围较小,针对性高,还需进一步研究发展。 |
材料分类 | 产品 | 优势 | 缺陷 |
---|---|---|---|
金属基骨组织修复材料 | 主要有镍铬不锈钢、钴铬钼合金和钛及其合金,如骨钉、骨板、人工关节、人工血管和人工晶状体等。 | 耐蚀性和化学稳定性,力学上具有适宜的强度、韧性、耐磨性和耐疲劳性能,易加工成各种复杂形状,价格便宜和使用方便。 | 生物惰性材料不与组织相结合,既不能被吞噬系统所吞噬,也无法作为异物被排出体外。 |
无机非金属基骨组织修复材料 | 生物活性玻璃、生物陶瓷、可吸收缝合线等多种生物活性材料。 | 具备生物活性,即材料本身无毒,又具有高度的生物相容性,且在体内可促进缺损组织再生。 | 与金属基材料相比,无机非金属材料可塑性较差,力学性能不佳,成型性也较差。 |
高分子基骨组织修复材料 | 由PLA、橡胶、聚乙烯、聚丙烯等可降解和不可降解高分子制备的人工心脏瓣膜、人工骨等。 | 分子键较强,具有较高的化学稳定性、力学强度、可加工性和耐磨损性能。 | 大部分高分子基材料没有生物活性,部分高分子可能引起炎症及免疫反应。 |
有机/无机复合骨组织修复材料 | 组织工程支架材料、原位组织再生材料、可降解复合细胞和(或)生长因子材料等。 | 有机材料与无机材料相结合,既具备生物活性,又具备较好的力学性能。 | 制备难度高,相比其他的材料运用范围较小,针对性高,还需进一步研究发展。 |
1 | HO⁃SHUI⁃LING A, BOLANDER J, RUSTOM L E. et al. Bone Regeneration Strategies: Engineered Scaffolds, Bioactive Molecules and Stem Cells Current Stage and Future perspectives[J]. Biomaterials, 2018,180: 143⁃162. |
2 | GOMEZ⁃BARRENA E, ROSSET P, LOZANO D, et al. Bone Fracture Healing: Cell Therapy in Delayed Unions and Nonunions[J]. Bone, 2015,70: 93⁃101. |
3 | CANCEDDA R, GIANNONI P, MASTROGIACOMO M. A Tissue Engineering Approach to Bone Repair in Large Animal Models and in Clinical Practice. Biomaterials[J], 2007,28(29): 4 240⁃4 250. |
4 | NARAYANAN G, VERNEKAR V N, KUYINU E L, et al. Poly (lactic acid)⁃based Biomaterials for Orthopaedic Regenerative Engineering[J]. Advanced Drug Delivery Review, 2016, 107: 247⁃276. |
5 | MURUGAN R, RAMAKRISHNA S. Development of Nanocomposites for Bone Grafting[J]. Composites Science and Technology, 2005, 65(15/16): 2 385⁃2 406. |
6 | SALGADO A J, COUTINHO O P, REIS R L. Bone Tissue Engineering: State of the Art and Future Trends[J]. Macromol Biosci, 2004, 4(8): 743⁃765. |
7 | JOSE M V, THOMAS V, JOHNSON K T, et al. Aligned PLGA/HA Nanofibrous Nanocomposite Scaffolds For Bone Tissue Engineering[J]. Acta Biomater, 2009, 5(1): 305⁃315. |
8 | STAIGER M P, PIETAK A M, HUADMAI J, et al. Magnesium and Its Alloys as Orthopedic Biomaterials: A Rview[J]. Biomaterials, 2006, 27(9): 1 728⁃1 734. |
9 | NIINOMI M. Design and Development of Metallic Biomaterials with Biological and Mechanical Biocompatibility[J]. Journal of Biomedical Materials Research Part A, 2019,107(5): 944⁃954. |
10 | SANTOS E, ORIVEGORKA, JOSE LUIS PEDRAZ, et al. Cell⁃Biomaterial Interaction: Strategies to Mimic the Extracellular Matrix[J]. Biomimetics, 2011,6: 642⁃650. |
11 | SINGHVI M S, ZINJARDE S S, GOKHALE D V. Polylactic Acid: Synthesis and Biomedical Applications[J]. Journal of Applied Microbiology, 2019, 127(6): 1 612⁃1 626. |
12 | WANG J Z, YOU M L, DING Z Q, et al. A Review of Emerging Bone Tissue Engineering Via PEG Conjugated Biodegradable Amphiphilic Copolymers[J]. Mater Sci Eng C Mater Biol Appl, 2019,97: 1 021⁃1 035. |
13 | HOLLISTER S J, MURPHY W L. Scaffold Translation: Barriers between Concept and Clinic[J]. Tissue Engineering Part B: Reviews, 2011, 17(6): 459⁃474. |
14 | GRITSCH L, CONOSCENTI G, CARRUBBA L, et al. Polylactide⁃based Materials Science Strategies to Improve Tissue⁃material Interface without the use of Growth Factors or Other Biological Molecules[J]. Materials Science &Engineering C⁃Materials for Biological Applications, 2019,94: 1 083⁃1 101. |
15 | MIGUEZ⁃PACHECO V, HENCH L L, BOCCACCINI A R. Bioactive Glasses beyond Bone and Teeth: Emerging Applications in Contact with Soft Tissues[J]. Acta Biomater, 2015,13: 1⁃15. |
16 | BAINO F, NOVAJRA G, BOCCACCINI A R, et al. Bioactive Glasses: Special Applications Outside the Skeletal System[J]. Journal of Non⁃Crystalline Solids, 2016,432: 15⁃30. |
17 | XIAO Y F, YANG Y, LI J F, et al. Porous Composite Calcium Citrate/Polylactic Acid Materials with High Mineralization Activity and Biodegradability for Bone Repair Tissue Engineering[J]. International Journal of Polymeric Materials, 2021,70(7):507⁃520. |
18 | BHARADWAZ A,JAYASURIYA A C. Recent Trends in the Application of Widely Used Natural and Synthetic Polymer Nanocomposites in Bone Tissue Regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2020,110: 110698. |
19 | CHEN J, ZHANG T, HUA W, et al. 3D Porous Poly(lactic acid)/Regenerated Cellulose Composite Scaffolds Based on Electrospun Nanofibers for Biomineralization[J].2019,585:124048 |
20 | DEVAL P B, MIN H K, HO P, et al. Coaxially Fabricated Polylactic Acid Electrospun Nanofibrous Scaffold for Sequential Release of Tauroursodeoxycholic Acid and Bone Morphogenic Protein2 to Stimulate Angiogenesis and Bone Regeneration[J]. Chemical Engineering Journal, 2020,389:123470. |
21 | DWEK J. The Periosteum: What Is It, Where Is It, And What Mimics It In Its Absence? [J]. Skeletal Radiol, 2010,39(4): 319⁃323. |
22 | SYED⁃PICARD F N, SHAH G A, COSTELLO B J, et al. Regeneration of Periosteum by Human Bone Marrow Stromal Cell Sheets[J]. Journal of Oral and Maxillofacial Surgery, 2014,72(6): 1 078⁃1 083. |
23 | WU L, GU Y, LIU L, et al. Hierarchical Micro/Nanofibrous Membranes of Sustained Releasing VEGF for Periosteal Regeneration[J]. Biomaterials, 2020,227: 119555. |
24 | COLNOT C, ZHANG X, KNOTHE T M. Current Insights on the Regenerative Potential of the Periosteum: Molecular, Cellular, and Endogenous Engineering Approaches[J]. Journal of Orthopaedic Research, 2012, 30(12): 1 869⁃1 878. |
25 | YANG Y Q, TAN Y Y, WONG R, et al. The Role of Vascular Endothelial Growth Factor in ossification[J]. Int J Oral Sci, 2012,4(2): 64⁃68. |
26 | HU K, YANG M, XU Y ,et al. Cell Cycle Arrest, Apoptosis, and Autophagy Induced by Chabamide in Human Leukemia Cells[J]. Chinese Herbal Medicines, 2016,8(1): 30⁃38. |
27 | LEE K,SILVA E A, MOONEY D J. Growth Factor Delivery⁃based Tissue Engineering: General Approaches and A Review of Recent Developments[J]. Journal of the Royal Society Interface, 2011. 8(55): 153⁃170. |
28 | MAES C, CARMELIET G, SCHIPANI E. Hypoxia⁃driven Pathways in Bone Development, Regeneration and Disease[J]. Nature Reviews Rheumatology, 2012, 8(6): 358⁃366. |
29 | YIN Z, CHEN X, CHEN J L, et al. The Regulation of Tendon Stem Cell Differentiation by the Alignment of Nanofibers[J]. Biomaterials, 2010,31(8): 2 163⁃2 175. |
30 | RUSSO V, ANCORA M, WYRWA R, et al. Tendon Biomimetic Electrospun PLGA Fleeces Induce an Early Epithelial⁃Mesenchymal Transition and Tenogenic Differentiation on Amniotic Epithelial Stem Cells[J]. Cells, 2020,9(2):303. |
31 | ZEUGOLIS D I, CHAN J C Y, PANDIT A. Tendons: Engineering of Functional Tissues[M].Heidelberg:Springer⁃Verlag,in Tissue Engineering,2011: 537⁃572. |
32 | LONGO U G, LAMBERTI A, MAFFULLI N, et al. Tendon Augmentation Grafts: A Systematic Review[J]. British Medical Bulletin, 2010,94: 165⁃188. |
33 | DENG D, WANG W, WANG B, et al. Repair of Achilles Tendon Defect With Autologous ASCs Engineered Tendon in A Rabbit Model[J]. Biomaterials, 2014,35(31): 8 801⁃8 809. |
34 | WANG F, ZHANG B, ZHOU L, et al. Imaging Dendrimer⁃Grafted Graphene Oxide Mediated Anti⁃miR⁃21 Delivery With an Activatable Luciferase Reporter[J]. ACS Applied Materials & Interfaces, 2016,8(14): 9 014⁃9 021. |
35 | WALDEN G, LIAO X, DONELL S, et al. A Clinical, Biological, and Biomaterials Perspective into Tendon Injuries and Regeneration[J]. Tissue Engineering Part B⁃Reviews, 2017,23(1): 44⁃58. |
36 | AMIRSADEGHI A, JAFARI A, EGGERMONT L J, et al. Vascularization Strategies for Skin Tissue Engineering[J]. Biomaterials Science, 2020,8(15): 4 073⁃4 094. |
37 | ZHANG X, BOGDANOWICZ D,ERISKEN C, et al. Biomimetic Scaffold Design for Functional and Integrative Tendon Repair[J]. Journal of Shoulder Elbow Surgery/American Shoulder and Elbow Surgeons, 2012,21(2):266⁃277. |
38 | ZHANG C, YUAN H, LIU H, et al. Well⁃aligned Chitosan⁃based Ultrafine Fibers Committed Teno⁃lineage Differentiation of Human Induced Pluripotent Stem Cells for Achilles Tendon Regeneration[J]. Biomaterials, 2015,53: 716⁃730. |
39 | THAYER P S, VERBRIDGE S S, DAHLGREN L A, et al. Fiber/Collagen Composites for Ligament Tissue Engineering: Influence of Elastic Moduli of Sparse Aligned Fibers on Mesenchymal Stem Cells[J]. Journal of Biomedical Materials Research Part A, 2016,104(8): 1 894⁃1 901. |
40 | DEEPTHI S, NIVEDHITHA SUNDARAM M, DEEPTI KADAVAN J, et al. Layered Chitosan⁃collagen Hydrogel/Aligned PLLA Nanofiber Construct for Flexor Tendon Regeneration[J]. Carbohydrate Polymers:Scientific and Technological Aspects of Industrially Important Polysaccharides, 2016,153: 492⁃500. |
41 | TAMAYOL A, AKBARI M, ANNABI N, et al. Fiber⁃based Tissue Engineering: Progress, Challenges, and Opportunities[J]. Biotechnology Advances, 2013, 31(5): 669⁃687. |
42 | MCCULLEN S D, HASLAUER C M, LOBOA E G. Fiber⁃reinforced scaffolds for Tissue Engineering and Regenerative Medicine: Use of Traditional Textile Substrates to Nanofibrous arrays[J]. Journal of Materials Chemistry, 2010,20(40):8 776⁃8 788. |
43 | VAISHYA R, PATRALEKH M K, BIJUKCHHE A R, et al. The Top 10 Arthroplasty Articles Published in Last 10 Years by Indian Authors[J]. Journal of Clinical Orthopaedics and Trauma, 2018,9(1): 94⁃100. |
44 | RIBEIRO V P, SILVA⁃CORREIA J, NASCIMENTO A I, et al. Silk⁃based Anisotropical 3D Biotextiles for Bone Regeneration[J]. Biomaterials, 2017,123: 92⁃106. |
45 | WU S H, ZHOU R, ZHOU F, et al. Electrospun Thymosin Beta⁃4 loaded PLGA/PLA nanofiber/ microfiber Hybrid Yarns for Tendon Tissue Engineering Application[J]. Materials Science & Engineering, 2020,106(1):110268. |
46 | HE Y, XU W H, ZHANG H, et al. Constructing Bone⁃Mimicking High⁃Performance Structured Poly(lactic acid) by an Elongational Flow Field and Facile Annealing Process[J]. ACS Applied Materials & Interfaces, 2020,12(11): 13 411⁃13 420. |
47 | BANKOLE I O, ZAHEDI S A, ADEOYE A O M, et al. 3D Printing of Bone Scaffolds with Hybrid Biomaterials[J].Composites Part B, 2019,158:428⁃436 |
48 | WU D, SPANOU A, DIEZ⁃ESCUDERO A, et al. 3D⁃printed PLA/HA Composite Structures as Synthetic Trabecular Bone: A Feasibility Study Using Fused Deposition Modeling[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2020,103: 103608. |
49 | ALAMFAHAD, VARADARAJAN K M, KUMAR S, et al. 3D Printed Polylactic Acid Nanocomposite Scaffolds for Tissue Engineering Applications[J].Materials Science & Engineering c⁃materials for Biological Applications, 2020,81:106203 |
50 | SILVA S S, MANO J F, REIS R L. Potential Applications of Natural Origin Polymer⁃based Systems in Soft tissue Regeneration[J]. Critical Reviews in Biotechnology, 2010,30(3): 200⁃221. |
51 | YOUNES I, RINAUDO M. Chitin and Chitosan Preparation From Marine Sources. Structure, Properties and Applications[J]. Marine Drugs, 2015,13(3): 1 133⁃1 174. |
52 | NISHINO R, KAKIZAKI H, FUKUSHIMA H, et al. Distribution of Chitinolytic Enzymes in the Organs and cDNA Cloning of Chitinase Isozymes from the Liver of Golden Cuttlefish Sepia esculenta[J]. Advances in Bioscience and Biotechnology, 2017,8(10): 361⁃377. |
53 | ZHOU D, ZHANG L, GUO S. Mechanisms of Lead Biosorption on Cellulose/Chitin Beads[J]. Water Research, 2005, 39(16): 3 755⁃3 762. |
54 | MUXIKA A, ETXABIDE A, URANGA J, et al. Chitosan as A Bioactive Polymer: Processing, Properties and Applications[J]. International Journal of Biological Macromolecules, 2017,105(2):1 358⁃1 368. |
55 | BHATNAGAR A, SILLANPAA M. Applications of Chitin⁃ and chitosan⁃derivatives for the Detoxification of Water and Wastewater⁃a Short Review[J]. Advances in Colloid & Interface Science, 2009,152(1/2): 26⁃38. |
56 | BRIGHAM C J. Chitin and Chitosan: Sustainable, Medically Relevant Biomaterials[J]International Journal of Biotechnology for Wellness Industries, 2017,6:41⁃47. |
57 | KURITA K. Chitin and Chitosan: Functional Biopolymers from Marine Crustaceans[J]. Mar Biotechnol (NY), 2006, 8(3): 203⁃226. |
58 | FOSTER L J, HO S, HOOK J, et al. Chitosan as A Biomaterial: Influence of Degree of Deacetylation on Its Physiochemical, Material and Biological Properties[J]. Public Library of Science One, 2015,10(8): 135⁃153. |
59 | YUSOF N L B M, YUSOF M, WEE A, et al. Flexible Chitin Films as Potential Wound⁃dressing Materials: Wound Model Studies[J]. Chemistry, 2003,66 A(2):224⁃232. |
60 | RASAL R M, JANORKAR A V, HIRT D E. Poly(lactic acid) Modifications[J]. Progress in Polymer Science, 2010,35(3): 338⁃356. |
61 | KEHAIL A A, BRIGHAM C J. Anti⁃biofilm Activity of Solvent⁃Cast and Electrospun Polyhydroxyalkanoate Membranes Treated with Lysozyme[J]. Journal of Polymers and the Environment, 2017,26(1): 66⁃72. |
62 | FREED L E, BORENSTEIN J T, MOUTOS F T, et al. Advanced material Strategies for Tissue Engineering Scaffolds[J]. Adv Mater, 2009, 21(32/33):3 410⁃3 418. |
63 | RAZAK S I A, SHARIF N F A, RAHMAN W A W A. Biodegradable Polymers and Their Bone Applications: A Review[J]. International Journal of Basic & Applied Sciences.2012,12(1):31⁃49. |
64 | BIOLOGY D O, DIVISION H S T, DIVISION E S. Applications of Polyhydroxyalkanoates in the Medical Industry[J]. International Journal of Biotechnology for Wellness Industries, 2012,1:53⁃60. |
65 | MUNIRAH S, KIM S H, RUSZYMAH B H, et al. The Use of Fibrin and Poly(lactic⁃co⁃glycolic acid) Hybrid Scaffold for Articular Cartilage Tissue Engineering: an in Vivo Analysis[J]. European Cells & Materials, 2008,15: 41⁃52. |
66 | CARRASCO F, SANTANA O O, MASPOCH M L, et al. Processing of Poly(lactic acid): Characterization of Chemical Structure, Thermal Stability and Mechanical Properties[J]. Polymer Degradation and Stability, 2010,95(2): 116⁃125. |
67 | BALAKRISHNAN H, HASSAN A, WAHIT M, et al. Novel Toughened Polylactic Acid Nanocomposite: Mechanical, Thermal and Morphological Properties[J]. Materials & Design, 2010,31(7): 3 289⁃3 298. |
68 | WAHL D A, CZERNUSZKA J T. Collagen⁃hydroxyapatite Composites for Hard Tissue Repair[J]. Eur Cell Mater, 2006,11: 43⁃56. |
69 | SERRA T, PLANELL J A, NAVARRO M, et al. 3D Printed PLA⁃based Scaffolds: A Versatile Tool in Regenerative Medicine[J]. Organogenesis, 2013,9(4): 239⁃244. |
70 | GREGOR A, FILOVA E, NOVAK M, et al. Designing of PLA Scaffolds for Bone Tissue Replacement Fabricated by Ordinary Commercial 3D Printer[J]. Journal of Biological Engineering, 2017,11: 31. |
71 | DOROZHKIN S V. Calcium Orthophosphate⁃Based Bioceramics[J]. Materials (Basel), 2013. 6(9): 3 840⁃3 942. |
72 | TRACY B M, DOREMUS R H. Direct Electron Microscopy Studies of The Bone⁃hydroxylapatite Interface[J]. Journal of Biomedical Materials Research,1984,18(7):719⁃726. |
73 | HONG Z, ZHANG P, HE C, et al. Nano⁃composite of Poly(L⁃lactide) and Surface Grafted Hydroxyapatite: Mechanical Properties and Biocompatibility[J]. Biomaterials, 2005,26(32): 6 296⁃6 304. |
74 | WANG H, LI Y, ZUO Y, et al. Biocompatibility and Osteogenesis of Biomimetic Nano⁃hydroxyapatite/Polyamide Composite Scaffolds for Bone Tissue Engineering[J]. Biomaterials, 2007,28(22): 3 338⁃3 348. |
75 | STIPNIECE L, RJABOVS V, JUHNEVICA I, et al. Development of Functionalized Hydroxyapatite/poly(vinyl alcohol) Composites[J]. Journal of Crystal Growth, 2016,444: 14⁃20. |
76 | HABRAKEN W, HABIBOVIC P, EPPLE M, et al. Calcium Phosphates in Biomedical Applications: Materials for The Future[J].Materials Today, 2016,19(2): 69⁃87. |
77 | MYGIND T, STIEHLER M, LI H, et al. Mesenchymal Stem Cell Ingrowth and Differentiation on Coralline Hydroxyapatite Scaffolds[J]. Biomaterials, 2007,28(6): 1 036⁃1 047. |
78 | YOSHIKAWA H, MYOUI A. Bone Tissue Engineering with Porous Hydroxyapatite Ceramics[J]. Journal of Artificial Organs, 2005,8(3): 131⁃136. |
79 | SUN F, ZHOU H, LEE J. Various Preparation Methods of Highly Porous Hydroxyapatite/Polymer Nanoscale Biocomposites for Bone Regeneration[J]. Acta Biomater, 2011,7(11): 3 813⁃3 828. |
80 | CHAKRAVARTY J, RABBI M F, CHALIVENDRA V, et al. Mechanical and Biological Properties of Chitin/Polylactide (PLA)/Hydroxyapatite (HAP) Composites Cast Using Ionic Liquid Solutions[J]. International Journal of Biological Macromolecules, 2020,151: 1 213⁃1 223. |
[1] | YU Changyong, XIN Zhong. Effect of α/β complex nucleating agent based on hexahydrophthalate on properties of polypropylene [J]. China Plastics, 2022, 36(7): 121-128. |
[2] | TAN Liqin, LIU Weiqu, LIANG Liyan, WANG Shuo, FENG Zhiqiang, LIN Jiaming. Preparation and performance of epoxy resin modified with mercaptan polysiloxane [J]. China Plastics, 2022, 36(7): 21-29. |
[3] | SONG Yinbao, YANG Jianjun, LI Chuanmin. Study on properties and manufacturing precision of PDMS/SiC functionally gradient composites [J]. China Plastics, 2022, 36(7): 30-36. |
[4] | XU Jie, ZHONG Jinfu, TONG Xiaoqian, LI Guangfu, FU Dongliang, LI Chengcheng. Preparation and performance of carboxyl⁃terminated tannic acid/gallic acid⁃based epoxy composite [J]. China Plastics, 2022, 36(7): 44-50. |
[5] | SHEN Xuemei, ZHU Xiaolong, HU Yanchao, SONG Renyuan, ZHANG Xianfeng, LI Xi. Fabrication and properties of poly(lactic acid))/ibuprofen microspheres through electrostatic spray method [J]. China Plastics, 2022, 36(7): 61-67. |
[6] | LI Kaize, XIN Yong. Properties of thermoplastic polyurethane composites modified with carbon nanotubes [J]. China Plastics, 2022, 36(6): 1-5. |
[7] | SHAO Linying, XI Yuewei, WENG Yunxuan. Research progress in degradation characteristics of poly(lactic acid) composites [J]. China Plastics, 2022, 36(6): 155-164. |
[8] | YANG Xiaolong, CHEN Wenjing, LI Yongqing, YAN Xiaokun, WANG Xiulei, XIE Pengcheng, MA Xiuqing. Research progress in polymer/graphene conductive composites [J]. China Plastics, 2022, 36(6): 165-173. |
[9] | WANG Shuai, ZHANG Yudi, YANG Fukai, XU Xinyu. Preparation and properties of polyimide/multi⁃walled carbon nanotubes composite foams [J]. China Plastics, 2022, 36(6): 39-45. |
[10] | WANG Jinye, TANG Bohu, YANG Lining, XIE Meng, GUO Zechao, YANG Guang. Study on multi⁃jet⁃fusion forming process of PA12 parts [J]. China Plastics, 2022, 36(6): 81-86. |
[11] | SUN Wenbo, XIN Chunling, HE Yadong, ZHAI Yujiao, YAN Baorui. Influence of micro⁃foaming injection molding process on cell structure of glass⁃fiber⁃reinforced PBT products [J]. China Plastics, 2022, 36(5): 1-7. |
[12] | WANG Rongchen, ZHANG Heng, SUN Huanwei, DUAN Shuxia, QIN Zixuan, LI Han, ZHU Feichao, ZHANG Yifeng. Research progress in preparation and hydrophilic modification of polylactic acid nonwovens for medical and health applications [J]. China Plastics, 2022, 36(5): 158-166. |
[13] | WANG Ke, LONG Chunguang. Mechanical and tribological properties of ultra⁃high molecular weight polyethylene/sepiolite fiber composites [J]. China Plastics, 2022, 36(5): 19-23. |
[14] | CHEN Sheng, LIANG Yingchao, WU Fangjuan, FANG Hui, FAN Xinfeng, CHEN Hui, WANG Yonggang. Preparation and interfacial modification of polyamide 6/bidirectional warp⁃knitted glass fiber composites [J]. China Plastics, 2022, 36(5): 24-28. |
[15] | HE Hezhi, XU Li, YANG Yike. Effect of prestress on mechanical properties of PC/CF laminates [J]. China Plastics, 2022, 36(4): 1-5. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||