京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2025, Vol. 39 ›› Issue (5): 1-8.DOI: 10.19491/j.issn.1001-9278.2025.05.001
• Materials and Properties • Next Articles
WU Xiran1,2(), JIA Zhixin2(
), LIU Lijun2, LI Jiqiang2, ZHAO Chuantao1,2, CHEN Bojie3
Received:
2024-07-10
Online:
2025-05-26
Published:
2025-04-26
CLC Number:
WU Xiran, JIA Zhixin, LIU Lijun, LI Jiqiang, ZHAO Chuantao, CHEN Bojie. Analysis of mechanical properties of PP⁃CGFR/PP⁃LGFR⁃integrated over⁃molding products[J]. China Plastics, 2025, 39(5): 1-8.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plaschina.com.cn/EN/10.19491/j.issn.1001-9278.2025.05.001
实验编号 | 工艺参数组合 | ||||
---|---|---|---|---|---|
1 | A1B1C1D1E1 | 132.03 | 165.40 | 16.74 | 21.41 |
2 | A4B1C2D5E5 | 196.62 | 268.52 | 22.75 | 26.32 |
3 | A5B1C4D3E3 | 173.77 | 282.53 | 19.21 | 38.12 |
4 | A3B1C5D2E2 | 157.41 | 198.33 | 22.54 | 27.14 |
5 | A2B1C3D4E4 | 134.51 | 169.70 | 14.32 | 22.12 |
6 | A5B2C2D2E4 | 181.30 | 251.27 | 28.97 | 26.10 |
7 | A4B2C5D4E1 | 139.19 | 253.25 | 26.12 | 46.12 |
8 | A2B2C1D3E5 | 158.99 | 172.04 | 15.21 | 32.12 |
9 | A1B2C4D5E2 | 161.18 | 177.14 | 29.41 | 43.21 |
10 | A3B2C3D1E3 | 132.30 | 166.28 | 22.12 | 26.78 |
11 | A1B3C2D4E3 | 167.19 | 172.06 | 20.41 | 33.12 |
12 | A5B3C5D1E5 | 200.13 | 236.47 | 31.54 | 19.54 |
13 | A4B3C3D3E2 | 163.13 | 212.62 | 23.58 | 21.12 |
14 | A2B3C4D2E1 | 146.11 | 200.98 | 38.62 | 31.24 |
15 | A3B3C1D5E4 | 165.59 | 192.28 | 26.94 | 25.98 |
16 | A1B4C5D3E4 | 150.24 | 162.45 | 18.42 | 13.12 |
17 | A5B4C3D5E1 | 163.09 | 238.15 | 24.65 | 24.12 |
18 | A3B4C4D4E5 | 168.75 | 184.62 | 19.54 | 36.12 |
19 | A4B4C1D2E3 | 170.67 | 279.34 | 32.41 | 47.81 |
20 | A2B4C2D1E2 | 144.54 | 162.95 | 23.35 | 24.35 |
21 | A2B5C5D5E3 | 173.37 | 220.12 | 42.32 | 18.45 |
22 | A3B5C2D3E1 | 161.23 | 217.08 | 13.54 | 11.02 |
23 | A1B5C3D2E5 | 165.44 | 160.27 | 23.57 | 20.13 |
24 | A4B5C4D1E4 | 176.29 | 272.13 | 24.21 | 21.86 |
25 | A5B5C1D4E2 | 201.30 | 227.64 | 27.64 | 29.64 |
实验编号 | 工艺参数组合 | ||||
---|---|---|---|---|---|
1 | A1B1C1D1E1 | 132.03 | 165.40 | 16.74 | 21.41 |
2 | A4B1C2D5E5 | 196.62 | 268.52 | 22.75 | 26.32 |
3 | A5B1C4D3E3 | 173.77 | 282.53 | 19.21 | 38.12 |
4 | A3B1C5D2E2 | 157.41 | 198.33 | 22.54 | 27.14 |
5 | A2B1C3D4E4 | 134.51 | 169.70 | 14.32 | 22.12 |
6 | A5B2C2D2E4 | 181.30 | 251.27 | 28.97 | 26.10 |
7 | A4B2C5D4E1 | 139.19 | 253.25 | 26.12 | 46.12 |
8 | A2B2C1D3E5 | 158.99 | 172.04 | 15.21 | 32.12 |
9 | A1B2C4D5E2 | 161.18 | 177.14 | 29.41 | 43.21 |
10 | A3B2C3D1E3 | 132.30 | 166.28 | 22.12 | 26.78 |
11 | A1B3C2D4E3 | 167.19 | 172.06 | 20.41 | 33.12 |
12 | A5B3C5D1E5 | 200.13 | 236.47 | 31.54 | 19.54 |
13 | A4B3C3D3E2 | 163.13 | 212.62 | 23.58 | 21.12 |
14 | A2B3C4D2E1 | 146.11 | 200.98 | 38.62 | 31.24 |
15 | A3B3C1D5E4 | 165.59 | 192.28 | 26.94 | 25.98 |
16 | A1B4C5D3E4 | 150.24 | 162.45 | 18.42 | 13.12 |
17 | A5B4C3D5E1 | 163.09 | 238.15 | 24.65 | 24.12 |
18 | A3B4C4D4E5 | 168.75 | 184.62 | 19.54 | 36.12 |
19 | A4B4C1D2E3 | 170.67 | 279.34 | 32.41 | 47.81 |
20 | A2B4C2D1E2 | 144.54 | 162.95 | 23.35 | 24.35 |
21 | A2B5C5D5E3 | 173.37 | 220.12 | 42.32 | 18.45 |
22 | A3B5C2D3E1 | 161.23 | 217.08 | 13.54 | 11.02 |
23 | A1B5C3D2E5 | 165.44 | 160.27 | 23.57 | 20.13 |
24 | A4B5C4D1E4 | 176.29 | 272.13 | 24.21 | 21.86 |
25 | A5B5C1D4E2 | 201.30 | 227.64 | 27.64 | 29.64 |
因素 | 拉伸强度 | 弯曲强度 | ||||
---|---|---|---|---|---|---|
自由度 | 均方 | 显著性 | 自由度 | 均方 | 显著性 | |
误差 | 4 | 52.755 | — | 4 | 86.101 | — |
预热温度 | 4 | 878.916 | 0.009 | 4 | 7 962.841 | 0 |
模具温度 | 4 | 357.496 | 0.045 | 4 | 304.300 | 0.124 |
熔体温度 | 4 | 240.080 | 0.086 | 4 | 811.015 | 0.026 |
注射速度 | 4 | 149.333 | 0.169 | 4 | 388.325 | 0.087 |
保压压力 | 4 | 559.510 | 0.021 | 4 | 571.796 | 0.047 |
因素 | 拉伸强度 | 弯曲强度 | ||||
---|---|---|---|---|---|---|
自由度 | 均方 | 显著性 | 自由度 | 均方 | 显著性 | |
误差 | 4 | 52.755 | — | 4 | 86.101 | — |
预热温度 | 4 | 878.916 | 0.009 | 4 | 7 962.841 | 0 |
模具温度 | 4 | 357.496 | 0.045 | 4 | 304.300 | 0.124 |
熔体温度 | 4 | 240.080 | 0.086 | 4 | 811.015 | 0.026 |
注射速度 | 4 | 149.333 | 0.169 | 4 | 388.325 | 0.087 |
保压压力 | 4 | 559.510 | 0.021 | 4 | 571.796 | 0.047 |
1 | Gliszczyński A, Kubiak T. Load⁃carrying capacity of thin⁃walled composite beams subjected to pure bending[J]. Thin⁃Walled Structures, 2017, 115:76⁃85. |
2 | Czechowski L, Gliszczyński A, Bieniaś J, et al. Failure of GFRP channel section beams subjected to bending⁃numerical and experimental investigations[J]. Composites Part B: Engineering, 2017, 111:112⁃123. |
3 | Hwang M Y, Kang L. Characteristics and fabrication of piezoelectric GFRP using smart resin prepreg for detecting impact signals[J]. Composites Science and Technology, 2018,167:224⁃233. |
4 | Bourban P, Bögli A, Bonjour F, et al. Integrated processing of thermoplastic composites[J].Composites Science and Technology, 1998,58(5):633–637. |
5 | Shroff S, Acar E, Kassapoglou C.Design, analysis, fabrication, and testing of composite grid⁃stiffened panels for aircraft structures[J].Thin⁃Walled Struct,2017,119:235–246. |
6 | Akkerman R, Bouwman M, Wijskamp S. Analysis of the thermoplastic composite overmolding process: Interface strength[J]. Frontiers in Materials, 2020,7:27. |
7 | Sauer B B, Kampert W G, Wakeman M D, et al. Screening method for the onset of bonding of molten polyamide resin layers to continuous fiber reinforced laminate sheets[J]. Composites Science and Technology, 2016,129:166⁃172. |
8 | Rossa⁃Sierra A, Sánchez⁃Soto M, Illescas S, et al. Study of the interface behaviour between MABS/TPU bi⁃layer structures obtained through over moulding[J]. Materials & Design, 2009,30(10):3 979⁃3 988. |
9 | Giusti R, Lucchetta G. Analysis of the welding strength in hybrid polypropylene composites as a function of the forming and overmolding parameters[J]. Polymer Engineering & Science, 2018,58(4):592⁃600. |
10 | Wis A A, Kodal M, Ozturk S, et al. Overmolded polylactide/jute⁃mat eco⁃composites: A new method to enhance the properties of natural fiber biodegradable composites[J]. Journal of Applied Polymer Science, 2020,137(20):48692. |
11 | Mao Q, Hong Y, Wyatt T P, et al. Insert injection molding of polypropylene single⁃polymer composites[J]. Composites Science and Technology, 2015,106:47⁃54. |
12 | Wang J, Chen D, Wang S, et al. Insert injection molding of low⁃density polyethylene single⁃polymer composites reinforced with ultrahigh⁃molecular⁃weight polyethylene fabric[J]. Journal of Thermoplastic Composite Materials, 2018,31(8):1 013⁃1 028. |
13 | Bariani P F, Bruschi S, Ghiotti A, et al. An approach to modelling the forming process of sheet metal⁃polymer composites[J]. CIRP Annals, 2007,56(1):261⁃264. |
14 | Fiorotto M, Lucchetta G. Experimental investigation of a new hybrid molding process to manufacture high⁃performance composites[J]. International Journal of Material Forming, 2013,6(1):179⁃185. |
15 | Paramasivam A, Timmaraju M V, Velmurugan R. Influence of preheating on the fracture behavior of over⁃molded short/continuous fiber reinforced polypropylene composites[J]. Journal of composite materials, 2021,55(29):4 387⁃4 397. |
16 | 符亮, 蒋炳炎, 吴旺青, 等. 玻纤增强聚丙烯与尼龙66模内混合加工成型实验研究[J]. 中南大学学报(自然科学版), 2019,50(5):1 075⁃1 081. |
FU L, JIANG B Y, WU W Q,et al. Experimental research on in⁃mold hybrid molding of glass fiber reinforced polypropylene and nylon66[J]. Journal of Central South University:Science and Technology, 2019,50(5):1 075⁃1 081. | |
17 | Kim D, Kim H, Kim H. Design optimization and manufacture of hybrid glass/carbon fiber reinforced composite bumper beam for automobile vehicle[J]. Composite Structures, 2015,131:742⁃752. |
18 | Paramasivam A, Mallina V T, Ramachandran V, et al. Effect of interface temperature on low⁃velocity impact response of injection over⁃molded short/continuous fiber reinforced polypropylene composites[J]. Polymer Composites, 2024,45(2):1 165⁃1 177. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||