京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2025, Vol. 39 ›› Issue (1): 104-111.DOI: 10.19491/j.issn.1001-9278.2025.01.017
• Review • Previous Articles Next Articles
MA Fengan1, ZHAO Guanghui1(), TIAN Cheng2, JIA Yuzhe1, LIU Tao1
Received:
2024-04-06
Online:
2025-01-26
Published:
2025-02-14
CLC Number:
MA Fengan, ZHAO Guanghui, TIAN Cheng, JIA Yuzhe, LIU Tao. Research progress in effect of defects on mechanical properties of continuous⁃fiber⁃reinforced composites[J]. China Plastics, 2025, 39(1): 104-111.
缺陷名称 | 产生的主要原因 | 图例 |
---|---|---|
分层[ | 原材料水分、挥发物含量大,固化过程中夹杂空气和未排出的挥发成分等 | ![]() |
孔隙[ | 在成型工艺中空气滞留在树脂内形成 | ![]() |
褶皱[ | 预制体在移动、组合、缝合及合模过程中导致纤维层扭曲 | ![]() |
富树脂[ | 生产中局部纤维断裂或错误排列形成空洞,树脂流入空洞 | ![]() |
夹杂[ | 内部存在成分外的夹杂物,主要是原材料不纯、成型车间环境不良所致 | ![]() |
缺陷名称 | 产生的主要原因 | 图例 |
---|---|---|
分层[ | 原材料水分、挥发物含量大,固化过程中夹杂空气和未排出的挥发成分等 | ![]() |
孔隙[ | 在成型工艺中空气滞留在树脂内形成 | ![]() |
褶皱[ | 预制体在移动、组合、缝合及合模过程中导致纤维层扭曲 | ![]() |
富树脂[ | 生产中局部纤维断裂或错误排列形成空洞,树脂流入空洞 | ![]() |
夹杂[ | 内部存在成分外的夹杂物,主要是原材料不纯、成型车间环境不良所致 | ![]() |
检测方法 | 优势 | 局限性 |
---|---|---|
超声波[ | 反映缺陷的大小、形状和方向,灵敏度高,穿透力强,无污染 | 耦合器接触被测物品可能造成材料损坏 |
X射线[ | 内部结构检测精准,对小构件的扫描分辨率高 | 设备体积大、结构复杂,射线对人体有害,效率低 |
微波[ | 反映缺陷的位置、大小、样本层的变化,灵敏度高,能耗低 | 不适用大型设备检测 |
红外热成像[ | 快速,扫描范围宽,结果直观 | 不能判别缺陷种类,构件热扩散会影响精度 |
涡流[ | 微小裂纹检测突出 | 只能检测导电材料,精度低;接触性检测,对于检测技巧要求高 |
检测方法 | 优势 | 局限性 |
---|---|---|
超声波[ | 反映缺陷的大小、形状和方向,灵敏度高,穿透力强,无污染 | 耦合器接触被测物品可能造成材料损坏 |
X射线[ | 内部结构检测精准,对小构件的扫描分辨率高 | 设备体积大、结构复杂,射线对人体有害,效率低 |
微波[ | 反映缺陷的位置、大小、样本层的变化,灵敏度高,能耗低 | 不适用大型设备检测 |
红外热成像[ | 快速,扫描范围宽,结果直观 | 不能判别缺陷种类,构件热扩散会影响精度 |
涡流[ | 微小裂纹检测突出 | 只能检测导电材料,精度低;接触性检测,对于检测技巧要求高 |
参考文献 | 材料 | 试样 | 缺陷 | 参数变化/mm | 力学 性能 | |||
---|---|---|---|---|---|---|---|---|
L×W×T/mm | 铺层 | 形状 | 大小/mm | 位置 | ||||
[ | CF/EP (GSM200/CY230) | 260×25×3.2 | [0/0/(45/-45/90)2/(90/-45/45)2/0/0]s | 圆形 | d=24 t=0.012 | 面内中心0 o~45 o层间 | - | BF↓55.5 % FR↓81.8 % |
[ | CF/EP (T300/⁃) | 150×100×4 | [45/0/-45/90]4s | 圆形 | d=30 | 面内中心1/4厚度 | d↑10 | TS↓15.02% |
[ | CF/EP (T300/E51) | 100×25×2.64 | [0/0/45/-45/90/45/90/90/-45/45/45/90/-45/45/45/0/0]s | 矩形 | l×w=8×25 | 面内中心2~3层间 | - | TS↓2.7 % |
32×13×2.64 | l×w=8×13 | CS↓31.9 % | ||||||
[ | GF/EP | 300×280×4.5 | [(±45)/(0/90)4/(±45)/(0/90)3]s | 圆形 | d=44 | 面内中心t=0.9 mm | t↑1.0 | CS↓17 % |
[ | CF/EP (T700/⁃) | 30×10×4 | [0]40 s | 圆形 | S=60 mm2 | 面内中心t=0.5 mm | - | CS↓18.6 % |
正方形 | CS↓20.5 % | |||||||
三角形 | CS↓20.1 % |
参考文献 | 材料 | 试样 | 缺陷 | 参数变化/mm | 力学 性能 | |||
---|---|---|---|---|---|---|---|---|
L×W×T/mm | 铺层 | 形状 | 大小/mm | 位置 | ||||
[ | CF/EP (GSM200/CY230) | 260×25×3.2 | [0/0/(45/-45/90)2/(90/-45/45)2/0/0]s | 圆形 | d=24 t=0.012 | 面内中心0 o~45 o层间 | - | BF↓55.5 % FR↓81.8 % |
[ | CF/EP (T300/⁃) | 150×100×4 | [45/0/-45/90]4s | 圆形 | d=30 | 面内中心1/4厚度 | d↑10 | TS↓15.02% |
[ | CF/EP (T300/E51) | 100×25×2.64 | [0/0/45/-45/90/45/90/90/-45/45/45/90/-45/45/45/0/0]s | 矩形 | l×w=8×25 | 面内中心2~3层间 | - | TS↓2.7 % |
32×13×2.64 | l×w=8×13 | CS↓31.9 % | ||||||
[ | GF/EP | 300×280×4.5 | [(±45)/(0/90)4/(±45)/(0/90)3]s | 圆形 | d=44 | 面内中心t=0.9 mm | t↑1.0 | CS↓17 % |
[ | CF/EP (T700/⁃) | 30×10×4 | [0]40 s | 圆形 | S=60 mm2 | 面内中心t=0.5 mm | - | CS↓18.6 % |
正方形 | CS↓20.5 % | |||||||
三角形 | CS↓20.1 % |
参考文献 | 材料 | 试样 | 缺陷 | 参数变化 | 力学性能 | |||
---|---|---|---|---|---|---|---|---|
CF | EP | L×W×T/mm | 铺层 | 形状 | 孔隙率φ | |||
[ | T800 | X850 | 150×150×2 | [+45/-45/ 90/0/0/0]2s | - | 0.21 % | φ↑6.16 % | TS↓36.0 % ILSS↓41.2 % |
[ | M21C | IMA | 14×4.5×2.244 | [45/-45/45/ 90/-45/0]s | - | 3 % | 横向取样 | ILSS↓51.12 % |
纵向取样 | ILSS↓46.72 % | |||||||
[ | T700 | 3234 | 150×125×2 | (0,90)s | - | 0.11 % | 6个服役周期 | BS↓45.6 % |
8个服役周期 | BS↓62.3 % | |||||||
[ | 37⁃800WD、TR50S⁃12L 编织 | EP | 13.88×3.206×0.8 | - | - | 10.12 % | 小气泡随机分布变为面内中心大气泡 | E33 ↓18.55 % G13 ↓16.48 % G23 ↓10.79 % |
[ | AS4 | 3501 | - | - | 椭球 | 1 % | - | TS↓5.71 % CS↓9.3 % |
球 | TS↓14.09 % CS↓10.6 % | |||||||
圆柱 | TS↓18.29 % CS↓13.1 % | |||||||
[ | AS4 | 8552 | - | - | 三角形 | 1 % | 相比圆形缺陷 | TS↓2.5 % |
10 % | TS↓4.1 % |
参考文献 | 材料 | 试样 | 缺陷 | 参数变化 | 力学性能 | |||
---|---|---|---|---|---|---|---|---|
CF | EP | L×W×T/mm | 铺层 | 形状 | 孔隙率φ | |||
[ | T800 | X850 | 150×150×2 | [+45/-45/ 90/0/0/0]2s | - | 0.21 % | φ↑6.16 % | TS↓36.0 % ILSS↓41.2 % |
[ | M21C | IMA | 14×4.5×2.244 | [45/-45/45/ 90/-45/0]s | - | 3 % | 横向取样 | ILSS↓51.12 % |
纵向取样 | ILSS↓46.72 % | |||||||
[ | T700 | 3234 | 150×125×2 | (0,90)s | - | 0.11 % | 6个服役周期 | BS↓45.6 % |
8个服役周期 | BS↓62.3 % | |||||||
[ | 37⁃800WD、TR50S⁃12L 编织 | EP | 13.88×3.206×0.8 | - | - | 10.12 % | 小气泡随机分布变为面内中心大气泡 | E33 ↓18.55 % G13 ↓16.48 % G23 ↓10.79 % |
[ | AS4 | 3501 | - | - | 椭球 | 1 % | - | TS↓5.71 % CS↓9.3 % |
球 | TS↓14.09 % CS↓10.6 % | |||||||
圆柱 | TS↓18.29 % CS↓13.1 % | |||||||
[ | AS4 | 8552 | - | - | 三角形 | 1 % | 相比圆形缺陷 | TS↓2.5 % |
10 % | TS↓4.1 % |
参考文献 | 材料 | 试样 | 缺陷尺寸/mm | 参数变化 | 力学性能 | ||
---|---|---|---|---|---|---|---|
CF | EP | L×W×T/mm | 铺层 | ||||
[ | OCV LTX 1240 | Swancor2511⁃1A/BS | 138×15×4.2 | [0]5 s | w = 10 | A/w=5 | TS↓49 % |
A/w=15 | TS↓63 % | ||||||
A/w=20 | TS↓75 % | ||||||
[ | IM77 | 8552 | - | - | - | α= | TS↓2.21 % |
α= | TS↓11.11 % | ||||||
α= | TS↓14.94 % | ||||||
[ | T700 | JC⁃024A | 10×10×4 | - | - | 25 %纤维断裂 7 %褶皱 | |
25 %纤维断裂 | |||||||
7 %褶皱 | |||||||
[ | AS4 | 8552 | T = 1.5 | [0]5 s | w = 3 | 凸缺陷变为 凹缺陷 | E↓26.54 % |
参考文献 | 材料 | 试样 | 缺陷尺寸/mm | 参数变化 | 力学性能 | ||
---|---|---|---|---|---|---|---|
CF | EP | L×W×T/mm | 铺层 | ||||
[ | OCV LTX 1240 | Swancor2511⁃1A/BS | 138×15×4.2 | [0]5 s | w = 10 | A/w=5 | TS↓49 % |
A/w=15 | TS↓63 % | ||||||
A/w=20 | TS↓75 % | ||||||
[ | IM77 | 8552 | - | - | - | α= | TS↓2.21 % |
α= | TS↓11.11 % | ||||||
α= | TS↓14.94 % | ||||||
[ | T700 | JC⁃024A | 10×10×4 | - | - | 25 %纤维断裂 7 %褶皱 | |
25 %纤维断裂 | |||||||
7 %褶皱 | |||||||
[ | AS4 | 8552 | T = 1.5 | [0]5 s | w = 3 | 凸缺陷变为 凹缺陷 | E↓26.54 % |
1 | KONIUSZEWSKA A G, KACZMAR J W. Application of polymer based composite materials in transportation[J]. Progress in Rubber Plastics and Recycling Technology, 2016, 32(1): 1⁃24. |
2 | CAI J, DAI D Q. Inspection interval optimization for aircraft composite structures with dent and delamination damage[J]. Journal of Systems Engineering and Electronics, 2021, 32(1): 252⁃260. |
3 | JANG J, MAYDISON, KIM Y, et al. Effect of void content on the mechanical properties of GFRP for ship design[J]. Journal of Marine Science and Engineering, 2023, 11(6): 1 251. |
4 | LUO G, CHAI C P, LIU J Z, et al. Investigations on the mechanical properties of composite t⁃joints with defects under bending loading[J]. Sustainability, 2022, 14(24): 16 609. |
5 | 成李南, 徐思文, 陈向明, 等. 含预埋缺陷复合材料帽形加筋壁板界面失效研究[J]. 复合材料科学与工程, 2022, 4(8): 28⁃34. |
CHENG L N, XU S W, CHEN X M, et al. Analysis of interfacial failure in omega stiffened composite panel with embedded defect[J]. Composites Science and Engineering, 2022, 4(8): 28⁃34. | |
6 | Craven R, Graham D, Dalzel⁃Job J. Conceptual design of a composite pressure hull[J]. Ocean Engineering, 2016, 128, 153⁃162. |
7 | 李永胜, 王纬波, 李泓运, 等. 静水压下含缺陷中厚复合材料圆柱耐压壳的极限强度[J]. 复合材料学报, 2023, 40(5): 2 639⁃2 652. |
LI Y S, WANG W B, LI H Y, et al. Ultimate strength imperfect moderate thick composite cylindrical pressure shell under hydrostatic pressure[J]. Acta Materiae Compositea Sinica, 2023, 40(5): 2 639⁃2 652. | |
8 | 刘小锐, 赵 丰, 王秀梅, 等. 连续玻璃纤维增强聚丙烯层合板非等温拉伸成型质量研究[J]. 中国塑料, 2021, 35(12): 58⁃62. |
LIU X R, ZHAO F, WANG X M, et al. Study on non⁃isothermal stretch forming quality of continuous glass⁃fiber⁃reinforced polypropylene laminates[J]. China Plastics, 2021, 35(12): 58⁃62. | |
9 | ZHOU H, Gao F, GU P. Research on laser ultrasonic propagation characteristics and quantitative detection of delamination of carbon fiber composite[J]. Optik, 2022, 271: 170173. |
10 | 杨鹏飞, 樊俊铃, 宁宁, 等. 不同孔隙率碳纤维增强环氧树脂复合材料板的压缩强度及其预测模型[J]. 机械工程材料, 2021, 45(6): 52⁃56. |
YANG P F, FAN J L, NING N, et al. Compressive strength and prediction model of carbon fiber reinforced epoxy resin composite plates with different porosities[J]. Materials for Mechanical Engineering, 2021, 45(6): 52⁃56. | |
11 | 彭益丰, 湛利华, 杨晓波, 等. 成型压力对复合材料孔隙率和界面性能的影响[J]. 塑料工业, 2021, 49(10): 62⁃91. |
PENG Y F, ZHAN L H, YANG X B, et al. Effect pf autoclave cure pressure on void contents and interfacial properties of composites[J]. China Plastics Industry, 2021, 49(10): 62⁃91. | |
12 | 张森林, 吴 振, 任晓辉. 复合材料夹芯结构褶皱增强理论和有限元方法[J]. 复合材料学报, 2023, 40(8): 4 840⁃4 848. |
ZHANG S L, WU Z, REN X B. Enhanced theory and finite element method for wrinkling analysis of composite sandwich structure[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4 840⁃4 848. | |
13 | 葛立立, 俞鸣明, 方 琳, 等. 含富树脂缺陷碳纤维/环氧树脂复合材料拉伸性能及失效机制[J]. 复合材料学报, 2022, 2039(10): 4 961⁃4 971. |
Ge L L, YU M M, FANG L, et al. Tensile properties and failure mechanism of carbon fiber reinforced epoxy composite with resin rich defects[J]. Acta Materiae Compositae Sinica, 2022, 2039(10): 4 961⁃4 971. | |
14 | 王勇, 苏红岩, 胡乃法. 基于光纤F⁃P超声传感器的复合材料分层检测系统设计研究[J]. 激光杂志, 2023, 44(1): 80⁃84. |
WANG Y, SU H Y, HU N F. Detection system design and study of delamination in composite based on an optical fiber F⁃P ultrasound sensor[J]. Laser Journal, 2023, 44(1): 80⁃84. | |
15 | SPYROU E D, TSENIS T. Acousto⁃ultrasonic analysis of defects in composite specimens used in transportation domain[J]. Journal of Measurements in Engineering, 2021, 9(2): 117⁃127. |
16 | LI Q, YANG D L, HAO S T, et al. Development of the ZnO: Ga microrods⁃epoxy composite as ascintillation screen for ultrafast X⁃ray detection[J]. Optical Materials, 2020, 102: 109805. |
17 | HE H Y, ZHAO Y L, LIU B, et al. Detection of debonding defects between radar absorbing materials and CFRP substrate by microwave thermography[J]. Ieee Sensor Journal, 2022, 22(5): 4 378⁃4 385. |
18 | SALIM A, LIM S. Review of recent metamaterial microfluidic sensors[J]. Sensors, 2018, 18(1): 232. |
19 | GO S H, TUGIRUMUBANO A, KIM H G. Analysis of impact characteristics and detection of internal defects for unidirectional carbon composites with respect to fiber orientation[J]. Polymers, 2021, 13(2): 203. |
20 | ORAL I. Characterization of damages in materials by computer⁃aided tap testing[J]. IOP Conference Series: Materials Science and Engineering, 2019, 707: 012019. |
21 | XU D, LIU P F, CHEN Z P. Damage mode identification and singular signal detection of composite wind turbine blade using acoustic emission[J]. Composite Structures, 2020, 255: 112954. |
22 | GE J, CHENG X J, WU X G, et al. Research on the defect detection of carbon fiber reinforced polymer based on pulse laser ultrasound[J]. Optik, 2022, 268: 169810. |
23 | 韩彬, 廖天禄, 曾晓慧, 等. X射线无损检测技术在软包夹焊缝检测中的应用[J]. 机械工程与自动化, 2022, 233(4): 145⁃147. |
HAN B, LIAO T L, ZENG X H, et al. Application of X⁃Ray nondestructive testing techniques in inspection of bale clamp welds[J]. Mechanical Engineering & Automation, 2022, 233(4): 145⁃147. | |
24 | CHEN G L, YANAMANDRA K, GUPTA N. Artificial neural networks framework for detection of defects in 3D⁃printed fiber reinforcement composites[J]. JOM, 2021, 73(7): 1⁃10. |
25 | WU J P, YANG XQ, SU P Q, et al. Defects detection method based on programmable spoof surface plasmon polaritons in non⁃metallic composites[J]. Micromachines, 2023, 14(4): 756. |
26 | EBRAHIMIN S, FLEURET J, KLEIN M, et al. Robust principal component thermography for defect detection in composites[J]. Sensors, 2021, 21(8): 2 682. |
27 | 曾辉耀, 叶 波, 张依仃, 等. 单向碳纤维复合材料分层缺陷垂直涡流检测有限元仿真研究[J]. 传感技术学报, 2020, 33(1): 45⁃50. |
ZENG H Y, YE B, ZHANG Y D, et al. Finite element analysis of delamination in unidirectional carbon fiber reinforced polymer by vertical eddy current method [J]. Chinese Journal of Sensors and Actuators, 2020, 33(1): 45⁃50. | |
28 | 赵川涛, 贾志欣, 刘立君, 等. 环氧树脂/碳纤维复合材料模压力制品力学性能影响因素分析[J]. 中国塑料, 2024, 38(2): 26⁃32. |
ZHAO C T, JIA Z X, LIU L J, et al. Analysis of influencing factors of warpage deformation of epoxy/carbon fiber composite⁃molded products[J]. China Plastics, 2024, 38(2): 26⁃32. | |
29 | CHENG P, PENG Y, WANG K, et al. Mechanical performance and damage behavior of delaminated composite laminates subject to different modes of loading[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43(10): 455. |
30 | KOPPARTHI P K, GEMARAJU S, PATHAKOKILA B R, et al. Failure analysis of delaminated carbon/epoxy composite under pure bending: validation with numerical analysis[J]. Multidiscipline Modeling in Materials and Structures, 2021, 17(5): 974⁃989. |
31 | Li J W, Wang J H, Zhang L, et al. Study on the effect of different delamination defects on buckling behavior of spar cap in wind turbine blade[J]. Advances in Materials Science and Engineering, 2020, 10: 6979636 |
32 | 周 睿, 关志东, 贾云超, 等. 分层缺陷对复合材料层板压缩性能的影响[J]. 北京航空航天大学学报, 2015, 41(2): 311⁃317. |
ZHOU R, GUAN Z D, JIA Y C, et al. Effects of delamination on compressional properties of composite laminate[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(2): 311⁃317. | |
33 | WANG Q, CHEN Q Y, CHEN Y J, et al. The effect of internal delamination damage on the tensile strength of aeronautical composites[J]. Acta Mechanica Solida Sinica, 2022, 35(6): 979⁃986. |
34 | 沈 镇, 席近远, 杨 东, 等. 分层缺陷对复合材料壳体裙连接区轴向承载性能影响分析[J]. 固体火箭技术, 2023, 46(6): 930⁃937. |
SHEN Z, XI J Y, YANG D, et al. Study of delamination defects impact on axial load⁃bearing capacity of lap structure between skirt and composite case[J]. Journal of Solid Rocket Technology, 2023, 46(6): 930⁃937. | |
35 | 黄 勇, 宁志华. 纤维桥联效应下复合材料层合板的屈曲及分层扩展模拟[J]. 复合材料学报, 2022, 39(5): 2 504⁃2 514. |
HUANG Y, NING Z H. Simulation of buckling and delamination propagation of composite laminates with fiber bridging[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2 504⁃2 514. | |
36 | CARTIE D, LAN M, DAVIES P, et al. Influence of embedded gap and overlap fiber placement defects on interlaminar properties of high performance composites[J]. Materials, 2021, 14(18): 5 332. |
37 | 王志凯, 陈志鹏, 杨娜娜, 等. 初始缺陷对复合材料层合板力学性能影响研究[J]. 西北工业大学学报, 2019, 37: 730⁃736. |
WANG Z K, CHEN Z P, YANG N N, et al. Damage analysis and experimental study of composite structures with initial delamination[J]. Journal of Northwestern Polytechnical University, 2019, 37: 730⁃736. | |
38 | Li Y L, WANG B, ZHOU L. Study on the effect of delamination defects on the mechanical properties of CFRP composites[J]. Engineering Failure Analysis, 2023, 153: 107576. |
39 | 董大龙, 周 翔, 汪 海, 等. 分层对复合材料机械连接结构承载能力的影响[J]. 复合材料学报, 2018, 35(1): 61⁃69. |
DONG D L, ZHOU X, WANG H, et al. Bearing capacity of composite mechanical joint with hole delamination[J]. Acta Materiae Compositae Sinica, 2018, 35(1): 61⁃69. | |
40 | GE L, LI H M, ZHANG H Y, et al. Two⁃scale damage failure analysis of 3D braided composites considering pore defects[J]. Composite Structures, 2021, 260: 113556. |
41 | HUANG H, SHAN Z D, LIU J H, et al. A unified trans⁃scale mechanical properties prediction method of 3D composites with void defects[J]. Composite Structures, 2023, 306: 116574. |
42 | 李建树, 湛力华, 周源琦, 等. 基于图像处理的碳纤维增强树脂基复合材料固化压力⁃缺陷⁃力学性能建模与评估[J]. 复合材料学报, 2018, 35(12): 3 368⁃3 376. |
LI J S, ZHAN L H, ZHOU Y Q, et al. Modeling and evaluation of curing pressure⁃defects⁃mechanical properties of carbon fiber reinforced resin composites based on image processing[J]. Acta Materiae Compositae Sinica, 2018, 35(12): 3 368⁃3 376. | |
43 | TANG Z H, GUO L C, LI Z X, et al. A comparative study of void characteristics on the mechanical response of unidirectional composites[J]. Mechanics of Materials, 2022, 174: 104456. |
44 | 刘钧天, 陈萍, 于晶晶, 等. 孔隙率对环氧/T800级碳纤维复合材料力学性能影响[J]. 工程塑料应用, 2022, 50(10): 101⁃106. |
LIU J T, CHEN P, YU J J, et al. Influence of different porosity on mechanical properties of epoxy/T800 carbon fiber composites[J]. Engineering Plastics Application, 2022, 50(10): 101⁃106. | |
45 | GAO X H, LI Y, FU Y T, et al. Prediction of mechanical properties on 3D braided composites with void defects[J]. Composites Part B, 2020, 197: 108164. |
46 | 杨 慧, 刘兴宇, 史俊伟, 等. 孔隙率对复合材料层压板层间剪切力学性能影响研究[J]. 应用力学学报, 2020, 37(3): 1 191⁃1 195. |
YANG H, LIU X Y, SHI J W, et al. Effect on mechanical pro⁃perties of inter⁃laminar shear for laminate from porosity[J]. Chinese Journal of Applied Mechanics, 2020, 37(3): 1 191⁃1 195. | |
47 | 姜 明, 贾 近, 肖海英, 等. 温湿场交变环境下外加载荷对不同孔隙率CFRP弯曲力学性能影响[J]. 哈尔滨工业大学学报, 2018, 50(5): 38⁃43. |
JIANG M, JIA J, XIAO H Y, et al. Effect of external load on mechanical properties of CFRP bending under different temperatures and humidity[J]. Journal of Harbin Institute of Technology, 2018, 50(5): 38⁃43. | |
48 | MEKONNEN A A, WOO K. Effects of defects on effective material properties of triaxial braided textile composite[J]. International Journal of Aeronautical and Space Sciences, 2020, 21(3): 1⁃13. |
49 | 李 波, 赵美英, 万小朋. 不规则孔隙对复合材料横向拉伸力学性能的影响[J]. 复合材料学报, 2019, 36(2): 356⁃361. |
LI B, ZHAO Y M, WANG X P. Influence of irregular⁃void on transverse tensile mechanical properties of composites[J]. Acta Materiae Compositae Sinica, 2019, 36(2): 356⁃361. | |
50 | CHEN Y, VASIUKOV D, PARK C. Influence of voids presence on mechanical properties of 3D textile composites[J]. IOP Conference Series: Materials Science and Engineering, 2018, 406: 012006. |
51 | HYDE A, HE J L, CUI X D, et al. Effects of microvoids on strength of unidirectional fiber⁃reinforced composite materials[J]. Composites Part B, 2020, 187: 107844. |
52 | 钱若力, 穆晓光, 王 轩, 等. 含褶皱缺陷玻璃纤维增强复合材料层合板拉伸渐进失效分析[J]. 复合材料科学与工程, 2020, (7): 13⁃19. |
QIAN R L, MU X G, WANG X, et al. Progressive failure analysis of tensile strength of glass fiber reinforced composite laminates with wrinkle defects[J]. Composites Science and Engineering, 2020, (7): 13⁃19. | |
53 | CIMOLAI G, YASAEE M. Numerical simulations of embedded wrinkle defects geometry on the strength knockdown of FRP composites[J]. Composite Structures, 2023, 305: 116541. |
54 | LEI R X, DOU H, SUN Y, et al. A novel numerical simulation method for predicting compressive properties of 3D multiaxial braided composites considering various defects[J]. Chinese Journal of Aeronautics, 2023, 36(9): 369⁃379. |
55 | SITOHANG R D R, GROUVE W J B, WARENT L L, et al. Effect of in⁃plane fiber waviness defects on the compressive properties of quasi⁃isotropic thermoplastic composites[J]. Composite Structures, 2021, 272: 114166. |
56 | 陆 媚, 胡祎乐, 余 音. 复合材料双波纹面外褶皱缺陷细观力学分析方法[J]. 复合材料学报, 2023, 40(2): 1 129⁃1 141. |
LU M, HU W L, YU Y. Micro⁃mechanics analytical method for composite out ⁃of ⁃plane wrinkle wit double fiber⁃waviness[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 1 129⁃1 141. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||