1 |
AUTA H S, EMENIKE C U, FAUZIAH S H. Distribution and importance of microplastics in the marine environment: a review of the sources, fate, effects, and potential solutions [J]. Environment international, 2017, 102: 165⁃176.
|
2 |
孙 飞. 生物降解高分子材料的研究和发展 [J]. 中国石油和化工标准与质量, 2021, 41(2): 124⁃126.
|
|
SUN F. Research and development of biodegradable polymer materials [J]. China Petroleum and Chemical Standard and Quality, 2021, 41(2):124⁃126.
|
3 |
尚晓煜, 刘晓南, 谢锦辉, 等. PLA/PBAT复合材料研究进展 [J]. 工程塑料应用, 2021, 49(6): 157⁃164.
|
|
SHANG X Y, LIU X N, XIE J H, et al. Advance in research of polylactic acid/poly (butyleneadipate⁃co⁃terephthalate) composites [J]. Engineering Plastics Application, 2021, 49(6):157⁃164
|
4 |
BUSLOVICH A, HOREV B, SHEBIS Y, et al. A facile method for the deposition of volatile natural compound⁃based nanoparticles on biodegradable polymer surfaces [J]. Journal of Materials Chemistry B, 2018, 6(15): 2 240⁃2 249.
|
5 |
SAEED U, NAWAZ M, AL⁃TURAIF H. Wood flour reinforced biodegradable PBS/PLA composites [J]. Journal of Composite Materials, 2018, 52(19): 2 641⁃2 650.
|
6 |
GAN I, CHOW W S. Synthesis of phosphoric acid⁃treated sugarcane bagasse cellulose nanocrystal and its thermal properties enhancement for poly (lactic acid) nanocomposites [J]. Journal of Thermoplastic Composite Materials, 2019, 32(5): 619⁃634.
|
7 |
SHAH B L, SELKE S E, WALTERS M B, et al. Effects of wood flour and chitosan on mechanical, chemical, and thermal properties of polylactide [J]. Polymer Composites, 2008, 29(6): 655⁃663.
|
8 |
PORRAS A, MARANON A. Development and characterization of a laminate composite material from polylactic acid (PLA) and woven bamboo fabric [J]. Composites Part B: Engineering, 2012, 43(7): 2 782⁃2 788.
|
9 |
SADR S H, DAVARAN S, ALIZADEH E, et al. PLA⁃based magnetic nanoparticles armed with thermo/pH responsive polymers for combination cancer chemotherapy [J]. Journal of Drug Delivery Science and Technology, 2018, 45: 240⁃254.
|
10 |
DRUMRIGHT R E, GRUBER P R, HENTON D E. Polylactic acid technology [J]. Advanced Materials, 2000, 12(23): 1 841⁃1 846.
|
11 |
孙晨露, 刘喜军. 聚乳酸增韧改性研究进展 [J]. 化工时刊, 2017, 31(12): 40⁃42,54.
|
|
SUN C L, LIU X J. Research progress of toughening modification of polylactic acid [J]. Chemical Industry Times, 2017, 31(12):40⁃42, 54.
|
12 |
刘斌基. 聚乳酸的性质与制备方法 [J]. 新疆有色金属, 2015, 38(5): 54⁃56.
|
|
LIU B J. Properties and preparation of polylactic acid [J]. Xinjiang Nonferrous Metals, 2015, 38(5):54⁃56.
|
13 |
杨菊香, 曾 莎, 贾 园, 等. 聚乳酸改性及其应用进展 [J]. 塑料, 2020, 49(5): 102⁃107.
|
|
YANG J X, ZENG S, JIA Y, et al. Progress in modification of polylactic acid and its application [J]. Plastics, 2020, 49(5):102⁃107.
|
14 |
CAO X W, LUO J, CAO Y, et al. Structure and properties of deeply oxidized waster rubber crumb through long time ozonization [J]. Polymer degradation and stability, 2014, 109: 1⁃6.
|
15 |
CATALDO F, URSINI O, ANGELINI G. Surface oxidation of rubber crumb with ozone [J]. Polymer Degradation and Stability, 2010, 95(5): 803⁃810.
|
16 |
巩雨注, 王小萍, 贾德民. 废旧轮胎粉碎技术及其应用进展 [J]. 橡胶工业, 2021, 68(1): 66⁃72.
|
|
GONG Y Z, WANG X P, JIA D M. Crushing technology and application progress of waste tires [J]. China Rubber Industry, 2021,68(1):66⁃72.
|
17 |
方 懿, 刘金鑫. 常见废旧橡胶回收利用的途径和创新 [J]. 科技传播, 2014, 6(15): 146,27.
|
|
FANG Y, LIU J X. Ways and innovations in the recycling of common waste rubber [J]. Public Communication of Science & Technology, 2014, 6(15):146,27.
|
18 |
董 鹏, 乐 犇, 赵巧萌. 我国废旧橡胶循环利用之观察 [J]. 广东橡胶, 2018(12): 10⁃13.
|
|
DONG P, LE B, ZHAO Q M. Observations on the recycling of waste rubber in China [J]. Guangdong Rubber, 2018(12):10⁃13.
|
19 |
MOHAVED S O, ANSARIFAR A, NEZHAD S K, et al. A novel industrial technique for recycling ethylene⁃propylene⁃diene waste rubber [J]. Polymer Degradation and Stability, 2015, 111: 114⁃123.
|
20 |
LORENZO A T, ARNAL M L, ALBUERNE J, et al. DSC isothermal polymer crystallization kinetics measurements and the use of the Avrami equation to fit the data: Guidelines to avoid common problems [J]. Polymer Testing, 2007, 26(2): 222⁃231.
|