| [1] |
Liang Jun, Wu Jiawei, Guo Jun, et al. Radiative cooling for passive thermal management towards sustainable carbon neutrality[J]. National Science Review, 2023,10(1):nwac208.
|
| [2] |
Yin Xiaobo, Yang Ronggui, Tan Gang, et al. Terrestrial radiative cooling: Using the cold universeas a renewable and sustainable energy source[J]. Science, 2020,370(6518):786⁃791.
|
| [3] |
Jr Raymond W, Bliss. Atmospheric radiation near the surface of the ground: a summary for engineers[J]. Solar Energy, 1961,5(3):103⁃120.
|
| [4] |
Wang Ningsheng, Lv Yinyan, Zhao Dongliang, et al. Performance evaluation of radiative cooling for commercial⁃scale warehouse[J]. Materials Today Energy, 2022,24:100927.
|
| [5] |
Feng Kai, Wu Yang, Pei Xiaowei, et al. Passive daytime radiative cooling: From mechanism to materials and applications[J]. Materials Today Energy, 2024,43:101575.
|
| [6] |
Hossain Md Muntasir, Gu Min. Radiative cooling: principles, progress, and potentials[J]. Advanced Science. 2016,3(7):1500360.
|
| [7] |
Yu Xinxian, Jiaqi Chan, Chen Chun. Review of radiative cooling materials: performance evaluation and design approaches[J]. Nano Energy, 2021,88:106259.
|
| [8] |
Wang Tong, Wu Yi, Shi Lan, et al. A structural polymer for highly efficient all⁃day passive radiative cooling[J]. Nature Communications, 2021,12(1):365.
|
| [9] |
Ji Dongxiao, Lin Yagai, Guo Xinyue, et al. Electrospinning of nanofibres[J]. Nature Reviews Methods Primers, 2024,4(1):1.
|
| [10] |
Ahmed Farah Ejaz, Lalia Boor Singh, Raed Hashaikeh. A review on electrospinning for membrane fabrication: challenges and applications[J]. Desalination, 2015,356:15⁃30.
|
| [11] |
Liao Yuan, Chun⁃Heng Loh, Tian Miao, et al. Progress in electrospun polymeric nanofibrous membranes for water treatment: Fabrication, modification and applications[J]. Progress in Polymer Science, 2018,77:69⁃94.
|
| [12] |
Bhavana Joshi, Edmund Samuel, Kim Yong⁃il, et al. Review of recent progress in electrospinning⁃derived freestanding and binder⁃free electrodes for supercapacitors[J]. Coordination Chemistry Reviews, 2022,460:214466.
|
| [13] |
Sim Moh Terng, Zhi Yin Ee, Yuan Hao Lim, et al. Instant disinfecting face masks utilizing electroporation powered by respiration‐driven triboelectric nanogenerators[J]. Advanced Functional Materials, 2024,34(51):2410062.
|
| [14] |
Fan Wei, Zhang Cong, Liu Yang, et al. An ultra⁃thin piezoelectric nanogenerator with breathable, superhydrophobic, and antibacterial properties for human motion monitoring[J]. Nano Research, 2023,16(9):11 612⁃11 620.
|
| [15] |
Huang An, Guo Yu, Zhu Yiwei, et al. Durable washable wearable antibacterial thermoplastic polyurethane/carbon nanotube@silver nanoparticles electrospun membrane strain sensors by multi⁃conductive network[J]. Advanced Composites and Hybrid Materials, 2023,6(3):101.
|
| [16] |
Soo Xiang Yun Debbie, Tan Sze Yu, Cheong Augustine Kok Heng, et al. Electrospun peo/peg fibers as potential flexible phase change materials for thermal energy regulation[J]. Exploration, 2023,4(1):20230016.
|
| [17] |
Wang Shuai, Li Feiran, Zhao Xuezeng, et al. Sustainable oily liquid‐proof passive cooling (soc) textile for personal thermal management[J]. Small, 2024,20(42):2403249.
|
| [18] |
Cheng Ningbo, Miao Dongyang, Wang Chao, et al. Nanosphere⁃structured hierarchically porous pvdf⁃hfp fabric for passive daytime radiative cooling via one⁃step water vapor⁃induced phase separation[J]. Chemical Engineering Journal, 2023,460:141581.
|
| [19] |
Shi Xiaojie, Liu Chuhang, Lin Bo, et al. 3d printed cellulose nanofiber/silica nanoparticle scaffolds for daytime radiative cooling[J]. Additive Manufacturing, 2024,92:104392.
|
| [20] |
Ma Chao⁃Qun, Xue Chao⁃Hua, Fan Wei, et al. Synchronous radiative cooling and thermal insulation in sio2/poly(vinyl alcohol) composite aerogel for energy savings in building thermal management[J]. ACS Sustainable Chemistry & Engineering, 2024,12(14):5 695⁃5 704.
|
| [21] |
Amirhossein Ghahari S., Elham Mohsenzadeh, Oguz Gouillart Yesim, et al. A review of body radiant infrared control for personal thermal management with electrospun membranes[J]. Solar Energy Materials and Solar Cells, 2024,278:113149.
|
| [22] |
Pyun Kyung Rok, Seongmin Jeong, Yoo Myung Jin, et al. Tunable radiative cooling by mechanochromic electrospun micro‐nanofiber matrix[J]. Small, 2023,20(20):2308572.
|
| [23] |
Miao Dongyang, Cheng Ningbo, Wang Xianfeng, et al. Integration of janus wettability and heat conduction in hierarchically designed textiles for all⁃day personal radiative cooling[J]. Nano Letters, 2022,22(2):680⁃687.
|
| [24] |
Xu Yuanqiang, Zhang Xiaomin, Li Ying, et al. Radiative cooling face mask based on mixed micro⁃ and nanofibrous fabric[J]. Chemical Engineering Journal, 2024,481:148722.
|
| [25] |
Liao Mingna, Debashree Banerjee, Tomas Hallberg, et al. Cellulose‐based radiative cooling and solar heating powers ionic thermoelectrics[J]. Advanced Science, 2023,10(8):2206510.
|
| [26] |
Wu Xueke, Li Jinlei, Jiang Qinyuan, et al. An all⁃weather radiative human body cooling textile[J]. Nature Sustainability, 2023,6(11):1 446⁃1 454.
|
| [27] |
Zhang Jia⁃Han, Li Zhengtong, Xu Juan, et al. Versatile self⁃assembled electrospun micropyramid arrays for high⁃performance on⁃skin devices with minimal sensory interference[J]. Nature Communications, 2022,13(1):5 839.
|
| [28] |
Zhang Yuxin, Du Xiongfei, Huangfu Jiawei, et al. Self⁃cleaning ptfe nanofiber membrane for long⁃term passive daytime radiative cooling[J]. Chemical Engineering Journal, 2024,490:2206510.
|
| [29] |
Song Ying⁃Nan, Li Yue, Yan Ding⁃Xiang, et al. Novel passive cooling composite textile for both outdoor and indoor personal thermal management[J]. Composites Part A: Applied Science and Manufacturing, 2020,130:105738.
|
| [30] |
Zhao Xinpeng, Li Tangyuan, Xie Hua, et al. A solution⁃processed radiative cooling glass[J]. Science, 2023,382: 684⁃691.
|
| [31] |
Jeong Shin Young, Chi Yan Tso, Jimyeong Ha, et al. Field investigation of a photonic multi⁃layered tio2 passive radiative cooler in sub⁃tropical climate[J]. Renewable Energy, 2020,146:44⁃55.
|
| [32] |
Xu Mingyu, Li Jing, Ren Jun, et al. Superhydrophobic and recyclable passive daytime radiative cooling fabric prepared via electrospinning[J]. Chemical Engineering Journal, 2025,509:161274.
|
| [33] |
Li Mingzhang, Yan Zhen, Fan Desong. Flexible radiative cooling textiles based on composite nanoporous fibers for personal thermal management[J]. ACS Applied Materials & Interfaces, 2023,15(14):17 848⁃17 857.
|
| [34] |
Zhang Xiaoshuang, Yang Weifeng, Shao Zhuwang, et al. A moisture⁃wicking passive radiative cooling hierarchical metafabric[J]. ACS Nano, 2022,16(2):2 188⁃2 197.
|
| [35] |
Cheng Jinxue, Bai Jiulin, Guo Junyu, et al. Yarn⁃based degradable janus ppdo fabric for multifunctional applications[J]. ACS Applied Materials & Interfaces, 2024:56 448⁃56 458.
|
| [36] |
Kim Hojoong, Yoo Young Jin, Yun Joo Ho, et al. Outdoor worker stress monitoring electronics with nanofabric radiative cooler‐based thermal management[J]. Advanced Healthcare Materials, 2023,12(28):2301104.
|
| [37] |
Gao Hong, Li Zhao⁃Jian, Xu Xiao⁃Feng, et al. Electrospinning dual energy⁃saving design of pvdf⁃hfp nanofiber films for passive radiant cooling and air filtration[J]. AIP Advances, 2024,14(1):015349.
|
| [38] |
Peng Yidong, Dong Jiancheng, Zhang Yiting, et al. Thermally comfortable epidermal bioelectrodes based on ultrastretchable and passive radiative cooling e⁃textiles[J]. Nano Energy, 2024,120:109143.
|
| [39] |
Li Zhangcheng, Zhang Shiliang, Yang Zitan, et al. Cooling textiles provide a new solution to urban heat islands[J]. Advanced Fiber Materials, 2024,7(1):1⁃3.
|
| [40] |
Iqbal Mohammad Irfan, Shi Shuo, Kumar Gokula Manikandan Senthil, et al. Evaporative/radiative electrospun membrane for personal cooling[J]. Nano Research, 2022,16(2):2 563⁃2 571.
|