京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2025, Vol. 39 ›› Issue (12): 135-142.DOI: 10.19491/j.issn.1001-9278.2025.12.021
• Review • Previous Articles
BAO Luo1,2(
), LI Xindong1,2(
), ZHU Qinyan1,2, JIA Jianghui1,2, YU Siwei1,2, CAI Meng1,2, ZHONG Zhaohuang1,2
Received:2024-12-30
Online:2025-12-26
Published:2025-12-22
CLC Number:
BAO Luo, LI Xindong, ZHU Qinyan, JIA Jianghui, YU Siwei, CAI Meng, ZHONG Zhaohuang. Research progress in composite nanofiltration membranes modified with MXene[J]. China Plastics, 2025, 39(12): 135-142.
| MXene基材料 | 负载方式 | 水通量/LMH·bar-1 | 盐/染料截留率 | 参考文献 |
|---|---|---|---|---|
| COOH–Ti3C2Tx | 涂刷法 | 12.90 | MgSO4 (99.1 %) | [ |
| Ti3C2Tx⁃TA⁃PEI | 层层自组装法 | 204.00 | 埃文思蓝(EB)(99.9 %) 758.1的超高染料/盐分离比 | [ |
| ZnO⁃Ti3C2Tx | 真空辅助过滤 | 138.81 | CR(5.44 %) 循环6次后RhB>88.48 % | [ |
| TiO2⁃Ti3C2Tx | 喷涂法 | 11.10 | MgSO4(98.29 %) | [ |
| Ti3C2Tx⁃MoS2 | 真空辅助过滤 | 150~242 | MO(95.8 %) CR(99.3 %) MB(98.5 %) Rh(99 %) | [ |
| Amino acid⁃bonded Ti3C2Tx | 真空辅助过滤 | 7.17~13.11 LMH/bar | MgSO4(86.28 %) MgCl2(81.36 %,) Na2SO4(72.88 %) NaCl(66.82 %) | [ |
| HPEI⁃AgNP@ Ti3C2Tx | 真空辅助过滤 | 24.63~30.73 | MgSO4(84.15 %), MgCl2(77.01 %) Na2SO4(74.67 %) NaCl(56.58 %) | [ |
| MXene+SFNs | 界面聚合 | 24.45 | CR(99.41 %) 对二甲苯亮色花青素(99.43 %) MB(99.08 %) Na2SO4(64.30 %) MgSO4(14.35 %) MgCl2(3.90 %) NaCl(15.85 %) | [ |
| Ti3C2Tx⁃PDA | 界面聚合 | 38.20 | CR(99.7 %) 活性蓝(RB19)(99.6 %), MB(98.5 %) 考马斯亮蓝(CBB)(99.5 %) NaCl(12.6 %) Na2SO4(29.9 %) | [ |
| Ti3C2Tx | 混合基质 | 2 880.00 | 97.9 %的除油率 水蒸气渗透率 (WVP) 达到 18 100 GPU | [ |
| ZnFeO @MXene | 混合基质 | 492.80 | BSA(92.5 %) 高染料/盐分离比 CR (97.3 %) Na2SO( 8 %) | [ |
| MXene基材料 | 负载方式 | 水通量/LMH·bar-1 | 盐/染料截留率 | 参考文献 |
|---|---|---|---|---|
| COOH–Ti3C2Tx | 涂刷法 | 12.90 | MgSO4 (99.1 %) | [ |
| Ti3C2Tx⁃TA⁃PEI | 层层自组装法 | 204.00 | 埃文思蓝(EB)(99.9 %) 758.1的超高染料/盐分离比 | [ |
| ZnO⁃Ti3C2Tx | 真空辅助过滤 | 138.81 | CR(5.44 %) 循环6次后RhB>88.48 % | [ |
| TiO2⁃Ti3C2Tx | 喷涂法 | 11.10 | MgSO4(98.29 %) | [ |
| Ti3C2Tx⁃MoS2 | 真空辅助过滤 | 150~242 | MO(95.8 %) CR(99.3 %) MB(98.5 %) Rh(99 %) | [ |
| Amino acid⁃bonded Ti3C2Tx | 真空辅助过滤 | 7.17~13.11 LMH/bar | MgSO4(86.28 %) MgCl2(81.36 %,) Na2SO4(72.88 %) NaCl(66.82 %) | [ |
| HPEI⁃AgNP@ Ti3C2Tx | 真空辅助过滤 | 24.63~30.73 | MgSO4(84.15 %), MgCl2(77.01 %) Na2SO4(74.67 %) NaCl(56.58 %) | [ |
| MXene+SFNs | 界面聚合 | 24.45 | CR(99.41 %) 对二甲苯亮色花青素(99.43 %) MB(99.08 %) Na2SO4(64.30 %) MgSO4(14.35 %) MgCl2(3.90 %) NaCl(15.85 %) | [ |
| Ti3C2Tx⁃PDA | 界面聚合 | 38.20 | CR(99.7 %) 活性蓝(RB19)(99.6 %), MB(98.5 %) 考马斯亮蓝(CBB)(99.5 %) NaCl(12.6 %) Na2SO4(29.9 %) | [ |
| Ti3C2Tx | 混合基质 | 2 880.00 | 97.9 %的除油率 水蒸气渗透率 (WVP) 达到 18 100 GPU | [ |
| ZnFeO @MXene | 混合基质 | 492.80 | BSA(92.5 %) 高染料/盐分离比 CR (97.3 %) Na2SO( 8 %) | [ |
| [1] | 邓麦村,金万勤. 膜技术手册 第2版 [M]. 2020. |
| [2] | Ji Chenhao, Zhai Zhe, Chi Jiang,et al.Recent advances in high⁃performance TFC membranes: A review of the functional interlayers[J].Desalination,2021,500: 114869 |
| [3] | Mo Jiahao, Li Xianhui, Yang Zhifeng,et al.Elucidating the role of interlayer structure in the permeance⁃selectivity trade⁃off of ceramic nanofiltration membrane[J].Separation and Purification Technology,2023,319: 124056 |
| [4] | Deshmukh Kalim, Muzaffar Aqib, Kovářík Tomáš, et al.Chapter 1 ⁃ Introduction to 2D MXenes: fundamental aspects, MAX phases and MXene derivatives, current challenges, and future prospects[J].Mxenes and Their Composites,2022: 1⁃47 |
| [5] | Chen Si⁃ruo, Ting Wang, Zhuo Xinyi,et al.PVDF mixed matrix membranes by incorporation of ionic liquid and MXene for enhancing permeation and antifouling performance[J].Journal of Environmental Chemical Engineering,2022,10(3): 108027 |
| [6] | Bury Dominika, Jakubczak Michał, Bogacki Jan,et al.Novel photo⁃Fenton nanocomposite catalyst based on waste iron chips⁃Ti3C2Tx MXene for efficient water decontamination[J].Diamond and Related Materials,2023,136: 109966. |
| [7] | Fu Jiawei, Hang Xu, Tao Lin,et al. Tailoring the crumpled structures of a polyamide membrane with a heterostructural MXene⁃TiO2 interlayer for high water permeability [J]. Desalination,2023, 549: 116352. |
| [8] | Ohchan Kwon, Yunkyu Kang Choi, Junhyeok, et al. A comprehensive review of MXene⁃based water⁃treatment membranes and technologies: Recent progress and perspectives [J]. Desalination, 2022, 522: 115448. |
| [9] | Nadeem Hussain Solangi,Nabisab Mujawar Mubarak,et al. Applications of advanced MXene⁃based composite membranes for sustainable water desalination [J].Chemosphere,2023, 314: 137643. |
| [10] | Ronchi Rodrigo Mantovani 1, Arantes Jeverson Teodoro1, Santos Sydney Ferreira. Synthesis,structure,properties and applications of MXenes: Current status and pers pectives.[J].Ceramics International,2019,45(15): 18 167⁃18 188. |
| [11] | Naguib Michael, Kurtoglu Murat, Presser Volker,et al. Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2 [J]. Advanced Materials, 2011, 23: 4 248⁃4 253. |
| [12] | Kim Hyunho, Alshareef Husam N. MXetronics: MXene⁃Enabled Electronic and Photonic Devices [J]. ACS Materials Letters, 23955⁃6900, Saudi Arabia, 2019, 2: 55⁃70. |
| [13] | Yang Zhaojie, Zhan Minghua, Zhao Zhixin,et al. Application of 2D nanomaterial MXene in anion exchange membranes for alkaline fuel cells: Improving ionic conductivity and power density [J]. International Journal of Hydrogen Energy, 2022, 47(41). |
| [14] | Guo Yitong, Liu Darong, Huang Bowen,et al. Effects of surface compositions and interlayer distance on electrochemical performance of Mo2CTx MXene as anode of Li⁃ion batteries [J]. Journal of Physics and Chemistry of Solids, 2023, 176. |
| [15] | 李 超, 杨 磊, 邹云麒, 等. NaF⁃KF熔盐体系制备Ti2CTx材料的研究 [J]. 陶瓷学报, 2019, 40(06): 800⁃804. |
| LI C, YANG L, ZOU Y Q,et al. Preparation of Ti2CTx with NaF⁃KF Molten⁃salt System[J]. Journal of Ceramics, 2019, 40(06): 800⁃804. | |
| [16] | 杨 磊, 李 超, 邹云麒,等. 不同氟化盐和盐酸混合液做刻蚀剂制备Ti2CTx [J]. 硅酸盐通报, 2019, 38(07): 2 057⁃2 060. |
| YANG L, LI C, ZOU Y Q, et al. Preparation of Ti2CTx by using different fluoride salts and hydrochloric acid as etchant [J]. Bulletin of the Chinese Ceramic Society,2019, 38(07): 2 057⁃2 060. | |
| [17] | Tian Zhengshan, Hao Tian, Cao Kesheng, Bai Suzhen, et al. Facile preparation of Ti3C2Tx sheets by selectively etching in a H2SO4/H2O2 mixture [J]. Frontiers in Chemistry, 2022, 10. |
| [18] | Hussain I, Amara U, Bibf F, et al. Mo⁃based MXenes: Synthesis, properties, and applications [J]. Adv Colloid Interface Sci, 2024, 324: 103077. |
| [19] | Tang Q, Wang Y, Chen N, et al. Ultra‐Efficient Synthesis of Nb4C3Tx MXene via H2O‐Assisted Supercritical Etching for Li‐Ion Battery [J]. Small Methods,2024, 8(3): 1⁃8. |
| [20] | TanQ, Zhuang W, Attia M, et al. Recent progress in additive manufacturing of bulk MAX phase components:A review [J]. Journal of Materials Science & Technology,2022,131(36): 30⁃47. |
| [21] | Cao J⁃M, Zatovsky I V, Gu Z⁃Y, et al. Two⁃dimensional MXene with multidimensional carbonaceous matrix: A platform for general⁃purpose functional materials [J]. Progress in Materials Science, 2023, 135. |
| [22] | Xu Nan, Wang Fengxia, Pei Sean Go, et al. Modification strategies for Ti3C2Tx MXene⁃based membranes to enhance nanofiltration performance: A review [J]. Separation and Purification Technology, 2024, 344: 127219. |
| [23] | 李海柯,李新冬,欧阳果仔, 等.构建聚酰胺复合纳滤膜中间层的研究进展 [J]. 塑料工业, 2021(7):96. |
| LI H K, LI X D, OUYANG G Z. Research progress in the construction of interlayer of polyamide composite nanofiltration membrane [J]. China Plastics Industry, 2021(7):96. | |
| [24] | Cheng Lilantian, Xin Li, Lei Li, et al. Hetero⁃dimensional 1D silk nanofibril and 2D MXene composite membrane with tailorable nanofluidic channels for enhanced water purification [J]. Journal of Membrane Science, 2024, 697: 122517. |
| [25] | 许士健,王玉鸣,王继乾.层层自组装复合膜的制备及性能研究 [J].现代化工,2022: 137⁃142. |
| XU S J, WANG Y M, WANG J Q. Preparation of layer⁃by⁃layer self⁃assembled composite films and properties [J]. Modern Chemical Industry, 2022: 137⁃142. | |
| [26] | Hu Yijing, Chen Zhihao, Ding Yidan, et al. Nanofiltration membranes fabricated by plant polyphenol⁃intermediated MXene and polyethyleneimine layer⁃by⁃layer self⁃assembly for efficient dye/salt separation [J]. Separation and Purification Technology, 2023, 323. |
| [27] | Yang Simin, Wang Jianqiang, Fang Lifeng, et al. Electrosprayed polyamide nanofiltration membrane with intercalated structure for controllable structure manipulation and enhanced separation performance(Article) [J].Journal of Membrane Science, 2020, 602: 117971. |
| [28] | Kayode Hassan Lasisi,Temitope Fausat Ajibade, ZhangK Kaisong. 3, 3′⁃diaminodiphenyl sulfone engagement in polysulfonamide⁃based acid⁃resistant nanofiltration membrane fabrication for efficient separation performance and heavy metal ions removal from wastewater [J].Journal of Membrane Science, 2022, 661: 120909. |
| [29] | Van Goethem Cédric,Verbeke, Rhea, Martin Pfanmöller, et al. The role of MOFs in Thin⁃Film Nanocomposite (TFN) membranes [J].Journal of Membrane Science, 2018, 563: 938⁃948. |
| [30] | Liu Yuting, Mo Jiahao, Ding Huiying, et al. Ultrafast loose nanofiltration membrane intercalated by in⁃situ grown nanoparticles for dye purification and reuse [J].Desalination, 2023, 551: 116439. |
| [31] | 周 君. 真空辅助过滤法制备MXene/ANF复合薄膜及其性能研究 [D].电子科技大学, 2022. |
| [32] | Li Yanan, Luo Haiyu, Ji Wenlan, et al. Visible⁃light⁃driven photocatalytic ZnO@Ti3C2Tx MXene nanofiltration membranes for enhanced organic dyes removal [J]. Separation and Purification Technology, 2023, 323. |
| [33] | Xu Nan, Wang Fengxia, Pei Sean Goh, et al.Construction of MoS2@MXene composite membranes with stable laminar structure for superior nanofiltration performance [J].Desalination, 2024, 77: 117419. |
| [34] | Shen Yunpeng, Yao Ayan, Li Jinyang, et al. Dispersive two⁃dimensional MXene via potassium fulvic acid for mixed matrix membranes with enhanced organic solvent nanofiltration performance [J]. Journal of Membrane Science, 2023, 666: 121168. |
| [35] | Rhyxxmo Petroleum. Crosslinked P84 copolyimide/MXene mixed matrix membrane with excellent solvent resistance and permselectivity [J]. Chinese Journal of Chemical Engineering, 2019, 27(4): 877⁃883. |
| [36] | Nabeeh Ahmed, Abdalla Omnya, Rehman Abdul, et al. Ultrafiltration polyethersulfone⁃MXene mixed matrix membranes with enhanced air dehumidification and oil⁃water separation performance [J]. Separation and Purification Technology, 2024, 346: 127285. |
| [37] | Ping Zhou, Ting Wang,Chun⁃Hui, et al. Construction of PES mixed matrix membranes incorporating ZnFe2O4@MXene composites with high permeability and antifouling performance [J]. Journal of Environmental Chemical Engineering, 2023, 11: 110252. |
| [38] | Freger V, Srebnik S. Mathematical model of charge and density distributions in interfacial polymerization of thin films [J].Journal of Applied Polymer Science,2003,88: 1 162⁃1 169. |
| [39] | Yu Shujun, Tang Hao, Zhang Di, et al. MXenes as emerging nanomaterials in water purification and environmental remediation [J]. Science of the Total Environment, 2022, 811: 152280. |
| [40] | Lu Haiyu, Xu Nan, Li Yanan, et al. Amino acid⁃bonded Ti3C2Tx MXene nanofiltration membranes with superior antifouling property for enhanced water purification [J]. Journal of Membrane Science, 2024, 693: 122384. |
| [41] | Lee Yoojin, Lee Jihyeon, So Yeon, et al. Mxene⁃based ceramic nanofiltration membranes for selective separation of primary contaminants in semiconductor wastewater [J]. Separation and Purification Technology, 2024, 331: 125653. |
| [42] | Gu Shiguo, Ma Yun, Zhang Tao, et al. MXene Nanosheet Tailored Bioinspired Modification of a Nanofiltration Membrane for Dye/Salt Separation [J]. ACS ES and T Water,2023, 3: 1 756⁃1 766. |
| [43] | Liu Guozhen, Shen Jie, Ji Yufan, et al. Two⁃dimensional Ti2CTx MXene membranes with integrated and ordered nanochannels for efficient solvent dehydration [J].Journal of Materials Chemistry, 2019, 7: 12 095⁃12 104. |
| [44] | Gao Shengli, Qiu Jinkai, Xu Zhenliang, et al. Comparative analysis of polyamide nanofiltration membranes resistance to different acids: Insights from experiments and density functional theory simulations [J]. Journal of Membrane Science, 2024, 694: 122412. |
| [45] | Qiang Xue, Meng Wenqiao, Zhu Jinyuan, et al. Constructing carboxylated MXene interlayer in polyamide nanofiltration membrane for enhancing perm⁃selectivity and antifouling performance [J]. Journal of Membrane Science, 2023, 683. |
| [46] | Xu Yanchao, Guo Dongxue, Li Tong, et al. Manipulating the mussel⁃inspired co⁃deposition of tannic acid and amine for fabrication of nanofiltration membranes with an enhanced separation performance [J]. Journal of colloid and interface science, 2020, 565: 23⁃34. |
| [47] | Huang Zhengyi, Zhao Dieling, Shen Liguo, et al. MXenes for membrane separation: from fabrication strategies to advanced applications [J]. Science Bulletin, 2023,117585. |
| [48] | Ahmad Arabi Shamsabadi, Mohammad Sharifian Gh, Anasori Babak,et al. Antimicrobial Mode⁃of⁃Action of Colloidal Ti3C2Tx MXene Nanosheets [J]. ACS Sustainable Chemistry and Engineering, 2018, 6: 16 586⁃16 596. |
| [49] | Li Yanan, Liu Zhihai, Li Shuming, et al. Highly permeable and stable hyperbranched polyethyleneimine crosslinked AgNP@Ti3C2Tx MXene membranes for nanofiltration [J]. Journal of Membrane Science, 2023, 670: 121376. |
| [1] | CAO Shuai, JIANG Tao, LIU Xiong, WANG Ying, LI Wenge, WU Xinfeng. Research progress in preparation of thermal conductive composites with MXene [J]. China Plastics, 2024, 38(6): 139-144. |
| [2] | ZHU Jiawei, PAN Wei, HUANG Shizheng, MOHINI Sain, YANG Weimin, JIAN Ranran. Research progress in high⁃speed and high⁃strength fused deposition molding technology [J]. China Plastics, 2023, 37(8): 118-126. |
| [3] | HE Yidan, ZHANG Xiaojuan, YANG Hongjuan, ZHAO Mengmeng, WEN Bianying. Research progress in MXene and its composites for microwave absorption and thermal conduction [J]. China Plastics, 2022, 36(10): 167-177. |
| [4] | ZHAO Qing, HE Shaojian, LIN Jun, LIN Qianguo. Preparation and Properties of Gas-Separation Membranes Based on Blends of Poly(ether-co-amide) [J]. China Plastics, 2019, 33(9): 13-20. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||