京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2022, Vol. 36 ›› Issue (10): 138-148.DOI: 10.19491/j.issn.1001-9278.2022.10.020
• Plastic and Environment • Previous Articles Next Articles
ZHANG Jiale1,2, BO Caiying1, BEI Yu1,2, SHA Ye2, JIA Puyou1(), ZHOU Yonghong1
Received:
2022-05-09
Online:
2022-10-26
Published:
2022-10-27
CLC Number:
ZHANG Jiale, BO Caiying, BEI Yu, SHA Ye, JIA Puyou, ZHOU Yonghong. Research progress in bio⁃based vitrimer materials[J]. China Plastics, 2022, 36(10): 138-148.
1 | De Gennes P G, Gennes P G. Scaling concepts in polymer physics[M]. Cornell University Press, 1979:203⁃213. |
2 | Doi M, Edwards S F. The theory of polymer dynamics[M]. Oxford University Press, 1988:135⁃150. |
3 | Ferry J D. Viscoelastic properties of polymers[M]. John Wiley & Sons, 1980:361⁃396. |
4 | Biron M. Thermoplastics and thermoplastic composites: technical information for plastics users[M]. Elsevier, 2007:259⁃274. |
5 | Li H, Englund K. Recycling of carbon fiber⁃reinforced thermoplastic composite wastes from the aerospace industry[J]. Journal of Composite Materials, 2017, 51(9): 1 265⁃1 273. |
6 | Zheng N, Xu Y, Zhao Q, et al. Dynamic covalent polymer networks: a molecular platform for designing functions beyond chemical recycling and self⁃healing[J]. Chemical Reviews, 2021, 121(3): 1 716⁃1 745. |
7 | Kloxin C J, Scott T F, Adzima B J, et al. Covalent adaptable networks (CANs): a unique paradigm in cross⁃linked polymers[J]. Macromolecules, 2010, 43(6): 2 643⁃2 653. |
8 | Montarnal D, Capelot M, Tournilhac F, et al. Silica⁃like malleable materials from permanent organic networks[J]. Science, 2011, 334(6058): 965⁃968. |
9 | Denissen W, Winne J M, Du Prez F E. Vitrimers: permanent organic networks with glass⁃like fluidity[J]. Chemical Science, 2016, 7(1): 30⁃38. |
10 | Angell C A. Formation of glasses from liquids and biopolymers[J]. Science, 1995, 267(5206): 1924⁃1 935. |
11 | Zhang X. Reconfigurable,Easy Repairable and low⁃temperature resistant dynamic 3D polymer structures[J]. Acta Polymerica Sinica,2016(6):685⁃687. |
12 | Huang X, Liu H C, Fan Z, et al. Hyperbranched polymer toughened and reinforced self⁃healing epoxy vitrimer[J]. Acta Polymerica Sinica,2019,50(5):535⁃542. |
13 | Kloxin C J, Bowman C N. Covalent adaptable networks: smart, reconfigurable and responsive network systems[J]. Chemical Society Reviews, 2013, 42(17): 7 161⁃7 173. |
14 | Scheutz G M, Lessard J J, Sims M B, et al. Adaptable crosslinks in polymeric materials: resolving the intersection of thermoplastics and thermosets[J]. Journal of the American Chemical Society, 2019, 141(41): 16 181⁃16 196. |
15 | Denissen W, Winne J M, Du Prez F E. Vitrimers: permanent organic networks with glass⁃like fluidity[J]. Chemical Science, 2016, 7(1): 30⁃38. |
16 | Williams M L, Landel R F, Ferry J D. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass⁃forming liquids[J]. Journal of the American Chemical society, 1955, 77(14): 3 701⁃3 707. |
17 | Ngai K L, Plazek D J. Relation of internal rotational isomerism barriers to the flow activation energy of entangled polymer melts in the high⁃temperature Arrhenius region[J]. Journal of Polymer Science: Polymer Physics Edition, 1985, 23(10): 2 159⁃2 180. |
18 | Kheirandish S, Stadlbauer M. Molecular stress function theory and analysis of branching structure in industrial polyolefins[J]. Journal of Thermal Analysis and Calorimetry, 2009, 98(3): 629⁃637. |
19 | Liu C Y H J, Keunings R B C. New linearized relation for the universal viscosity⁃temperature behavior of polymer melts[J]. Macromolecules, 2006, 39(25): 8 867⁃8 869. |
20 | Morris B A. The science and technology of flexible packaging: multilayer films from resin and process to end use[M]. William Andrew, 2016:382⁃403. |
21 | Brutman J P, Delgado P A, Hillmyer M A. Polylactide vitrimers[J]. ACS Macro letters, 2014, 3(7): 607⁃610. |
22 | Capelot M, Unterlass M M, Tournilhac F, et al. Catalytic control of the vitrimer glass transition[J]. ACS Macro Letters, 2012, 1(7): 789⁃792. |
23 | Zee N, Nicolaÿ R. Vitrimers: permanently crosslinked polymers with dynamic network topology[J]. Progress in Polymer Science, 2020:101233. |
24 | Denissen W, Droesbeke M, Nicolaÿ R, et al. Chemical control of the viscoelastic properties of vinylogous urethane vitrimers[J]. Nature Communications, 2017, 8(1): 1⁃7. |
25 | Self J L, Dolinski N D, Zayas M S, et al. Brønsted⁃acid⁃catalyzed exchange in polyester dynamic covalent networks[J]. ACS Macro Letters, 2018, 7(7): 817⁃821. |
26 | Fortman D J, Brutman J P, Cramer C J, et al. Mechanically activated, catalyst⁃free polyhydroxyurethane vitrimers[J]. Journal of the American Chemical Society, 2015, 137(44): 14 019⁃14 022. |
27 | Obadia M M, Jourdain A, Cassagnau P, et al. Tuning the viscosity profile of ionic vitrimers incorporating 1, 2, 3‐triazolium cross‐links[J]. Advanced Functional Materials, 2017, 27(45): 1703258. |
28 | Liu L W. Rreparation and properties of cellulose based vitrimer with dynamic ester bonds[D]. Dalian: Dalian University of Technology. |
29 | Chabert E, Vial J, Cauchois J P, et al. Multiple welding of long fiber epoxy vitrimer composites[J]. Soft Matter. 2016, 12(21): 4 838⁃4 845. |
30 | He C, Shi S, Wang D, et al. Poly (oxime–ester) vitrimers with catalyst⁃free bond exchange[J]. Journal of the American Chemical Society, 2019, 141(35): 13 753⁃13 757. |
31 | Zhang Z P, Rong M Z, Zhang M Q. Polymer engineering based on reversible covalent chemistry: A promising innovative pathway towards new materials and new functionalities[J]. Progress in Polymer Science, 2018, 80(5): 39⁃93. |
32 | Yang Y, Xu Y, Ji Y, et al. Functional epoxy vitrimers and composites[J]. Progress in Materials Science, 2021, 120(7): 100710. |
33 | Altuna F I, Hoppe C E, Williams R J J. Epoxy vitrimers with a covalently bonded tertiary amine as catalyst of the transesterification reaction[J]. European Polymer Journal, 2019, 113(4): 297⁃304. |
34 | Hiroaki U, Takayuki O, Ichiro S, et al. Naphthalene derivatives: EP, EP0763523 A1[P]. 1996. |
35 | Denissen W, Winne J M, Du Prez F E. Vitrimers: permanent organic networks with glass⁃like fluidity[J]. Chemical Science, 2016, 7(1): 30⁃38. |
36 | Spiesschaert Y, Guerre M, Imbernon L, et al. Filler reinforced polydimethylsiloxane⁃based vitrimers[J]. Polymer, 2019, 172(20): 239⁃246. |
37 | Hendriks B, Waelkens J, Winne J M, et al. Poly (thioether) vitrimers via transalkylation of trialkylsulfonium salts[J]. ACS Macro Letters, 2017, 6(9): 930⁃934. |
38 | Obadia M M, Mudraboyina B P, Serghei A, et al. Reprocessing and recycling of highly cross⁃linked ion⁃conducting networks through transalkylation exchanges of C–N bonds[J]. Journal of the American Chemical Society, 2015, 137(18): 6 078⁃6 083. |
39 | Laurichesse S, Avérous L. Chemical modification of lignins: towards biobased polymers[J]. Progress in Polymer Science, 2014, 39(7):1 266⁃1 290. |
40 | Duval A, Lawoko M. A review on lignin⁃based polymeric, micro⁃ and nano⁃structured materials[J]. Reactive & Functional Polymers, 2014, 85(12):78⁃96. |
41 | Upton B M, Kasko A M. Strategies for the conversion of lignin to high⁃value polymeric materials: review and perspective[J]. Chemical Reviews, 2016, 116(4): 2 275⁃2 306. |
42 | Duval A, Lange H, Lawoko M, et al. Reversible crosslinking of lignin via the furan–maleimide Diels–Alder Reaction[J]. Green Chemistry, 2015, 17(11): 4 991⁃5 000. |
43 | Hao C, Liu T, Zhang S, et al. A high⁃lignin⁃content, removable, and glycol⁃assisted repairable coating based on dynamic covalent bonds[J]. Chem Sus Chem, 2019, 12(5): 1 049⁃1 058. |
44 | Tang R, Xue B, Tan J, et al. Regulating lignin⁃based epoxy Vitrimer performance by fine⁃tuning the lignin structure[J]. 2022, 4 (2):1 117⁃1 125. |
45 | Xue B, Tang R, Xue D, et al. Sustainable alternative for bisphenol a epoxy resin high⁃performance and recyclable lignin⁃based epoxy vitrimers[J]. Industrial Crops and Products, 2021, 168:113583. |
46 | Liu W, Fang C, Chen F, et al. Strong, reusable, and self⁃healing lignin⁃containing polyurea adhesives[J]. Chem Sus Chem, 2020, 13(17): 4 691⁃4 701. |
47 | Shuai Z, Liu T, Cheng H, et al. Preparation of a lignin⁃based vitrimer material and its potential use for recoverable adhesives[J]. Green Chemistry, 2018, 20:10.1039. |
48 | Chao L A, Yc A, Yong Z A, et al. Strong and recyclable soybean oil⁃based epoxy adhesives based on dynamic borate⁃science direct[J]. European Polymer Journal, 2021, 162: 110923. |
49 | Zhao X L, Liu Y Y, Weng Y X, et al. Sustainable epoxy vitrimers from epoxidized soybean oil and vanillin[J]. ACS Sustainable Chemistry And Engineering, 2020, 8(39):15 020⁃15 029. |
50 | Yzxa B, Pan F D, Sld A, et al. Catalyst⁃free self⁃healing fully bio⁃based vitrimers derived from tung oil: Strong mechanical properties, shape memory, and recyclability⁃science direct[J]. Industrial Crops and Products, 2021,171: 113978. |
51 | Di Mauro C, Malburet S, Graillot A, et al. Recyclable, repairable, and reshapable (3R) Thermoset materials with shape memory properties from bio⁃based epoxidized vegetable oils[J]. ACS Applied Bio Materials, 2020, 3(11): 8 094⁃8 104. |
52 | Zhao W, Feng Z, Liang Z, et al. Vitrimer⁃cellulose paper composites: a new class of strong, smart, green, and sustainable materials[J]. ACS applied materials & interfaces, 2019, 11(39): 36 090⁃36 099. |
53 | Lossada F, Guo J, Jiao D, et al. Vitrimer chemistry meets cellulose nanofibrils: bioinspired nanopapers with high water resistance and strong adhesion[J]. Biomacromolecules, 2018, 20(2): 1 045⁃1 055. |
54 | Xu C, Zheng Z, Wu W, et al. Design of healable epoxy composite based on β⁃hydroxyl esters crosslinked networks by using carboxylated cellulose nanocrystals as crosslinker[J]. Composites Science and Technology, 2019, 181(8):107677.1⁃107677.9. |
55 | Lucherelli M A, Duval A, Avérous L. Biobased vitrimers: towards sustainable and adaptable performing polymer materials[J]. Progress in Polymer Science, 2022,127(4):101515. |
56 | Lossada F, Guo J, Jiao D, et al. Vitrimer chemistry meets cellulose nanofibrils: bioinspired nanopapers with high water resistance and strong adhesion[J]. Biomacromolecules, 2018, 20(2): 1 045⁃1 055. |
57 | Liu L W, Ju B Z. Preperation and property of vitrimer based on cellulose and transesterification[J/OL].New Chemical Materials:1⁃7[2022⁃0507]. . |
58 | Geng H, Wang Y, Yu Q, et al. Vanillin⁃based polyschiff Vitrimers: reprocessability and chemical recyclability[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11):15 463⁃15 470. |
59 | Memon H, Liu H, Rashid M A, et al. Vanillin⁃based epoxy Vitrimer with high performance and closed⁃loop recyclability[J]. Macromolecules, 2020, 53(2):621⁃630. |
[1] | XU Yunfei, ZHAO Zaisheng, XING Yajing, JIANG Jing. Preparation and Oil Absorption Performance of Porous Polylactide/Polyurethane Composites [J]. China Plastics, 2021, 35(11): 24-31. |
[2] | WEN Zewei, LIU Fuya, CUI Xiaojie, ZHANG Ge, MENG Weihua, XIE Jixing, XU Jianzhong. Mechanical Modification of Polylactic Acid with Reed Fibers for Flame⁃retardant Application [J]. China Plastics, 2021, 35(11): 38-43. |
[3] | LIU Wei, WU Xian, ZHANG Chun. Effect of Red Mud on Thermal, Mechanical Property and Foaming Behavior of PLA [J]. China Plastics, 2021, 35(11): 49-54. |
[4] | TANG Yujing, WANG Yaqiao, NI Jingyue, WANG Conglong, WANG Xiangdong. Effect of Stereoscopic Composite Crystals on Foaming Behavior of PLA [J]. China Plastics, 2021, 35(8): 117-124. |
[5] | DIAO Xiaoqian, WENG Yunxuan, FU Ye, ZHOU Yingxin. Review of Applications and Performance Evaluation Methods of Biodegradable Plastics [J]. China Plastics, 2021, 35(8): 152-161. |
[6] | CHEN Xinqi, BAI Yun, LIU Shanshan, GAO Xia, LIU Weili, ZHANG Mei, WU Yuwei, HUANG Yan, ZHAO Hongliang. Determination of Polylactic Acid and Other Components in Biodegradable Plastics Using Quantitative 1H⁃NMR Method [J]. China Plastics, 2021, 35(8): 181-188. |
[7] | ZHANG Bo, WANG Xiaofeng, GUO Meng, BAI Zhiyuan, REN Cuihong, HAN Wenjuan, UYAMA Hiroshi, LI Qian. Study on Surface Carboxylation Modification and Cytocompatibility of Poly(Lactic Acid) [J]. China Plastics, 2021, 35(5): 17-23. |
[8] | WU You, WANG Bohua, SUN Jianjian, JIN Yujuan. Study on Modification of PPC/PBS Blends with Epoxy⁃terminated Hyperbranched Polymer [J]. China Plastics, 2021, 35(4): 5-11. |
[9] | ZHOU Hongtao, QIAN Kun, DONG Shuo. Study on Tear Properties of Triaxial Weave Fabric Composites [J]. China Plastics, 2021, 35(1): 54-59. |
[10] | MA Qiaoyun, WENG Yunxuan, ZHANG Caili. Recovery of Poly(lactic acid) Through Ferric Chloride⁃catalyzed Alcoholysis [J]. China Plastics, 2020, 34(11): 73-80. |
[11] | WANG Xingran, WANG Minghao, DUN Dongxing, LI Shanzhe, ZHANG Xuedong, ZHOU Hongfu. Research Progress in Electromagnetic Shielding Performance of Polymer/Carbon Fillers Foaming Composites [J]. China Plastics, 2020, 34(10): 110-118. |
[12] | WEI Shiyi, TANG Yuntao, CHAI Chenze, ZHANG Yuxia, ZHOU Hongfu. Research Progress in Poly(lactic acid) Open⁃Cell Materials [J]. China Plastics, 2020, 34(10): 100-109. |
[13] | Yu ZU, Yanan REN, Jing HU. Study on Modification of Polylactic Acid/Poly(3⁃Hydroxybutyric Acid⁃co⁃3⁃Hydroxyvalate) Blends as 3D⁃Printing Filament [J]. China Plastics, 2020, 34(7): 36-43. |
[14] | Xinyu SONG, Yunxuan WENG, Caili ZHANG, Zhigang HUANG. Study on Modification and Properties of Polylactic Acid/ Bamboo Flour Composites [J]. China Plastics, 2020, 34(7): 21-29. |
[15] | Yanzhi SONG, Zhifeng ZHU, Shian LI. Study on Mechanical Performance of Octenylsuccinyl⁃Carboxymethyl Starch Films [J]. China Plastics, 2020, 34(4): 25-29. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||