京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2022, Vol. 36 ›› Issue (10): 149-158.DOI: 10.19491/j.issn.1001-9278.2022.10.021
• Plastic and Environment • Previous Articles Next Articles
WANG Zhiwei1,2(), WU Mengge1,2, CHEN Yan1,2, GUO Shuaihua1,2, LI Tiantian1,2, ZHAO Junting1,2, LI Hui3, LEI Tingzhou4
Received:
2022-07-17
Online:
2022-10-26
Published:
2022-10-27
CLC Number:
WANG Zhiwei, WU Mengge, CHEN Yan, GUO Shuaihua, LI Tiantian, ZHAO Junting, LI Hui, LEI Tingzhou. Recent advances in synergistic characteristics of co⁃pyrolysis derived from biomass and plastic[J]. China Plastics, 2022, 36(10): 149-158.
实验材料 | 表征现象 | 参考文献 |
---|---|---|
生物质与PE⁃HD | 生物炭比表面积变低 | [ |
木质素与PE⁃HD | 热解失重速率变大, 固体残渣量减少 | [ |
生物质与塑料 | 热解指数变大 | [ |
小球藻与PP | 活化能降低 | [ |
橄榄渣与聚氯乙烯(PVC) | 活化能降低 | [ |
花旗松与PE⁃LD | 活化能降低 | [ |
实验材料 | 表征现象 | 参考文献 |
---|---|---|
生物质与PE⁃HD | 生物炭比表面积变低 | [ |
木质素与PE⁃HD | 热解失重速率变大, 固体残渣量减少 | [ |
生物质与塑料 | 热解指数变大 | [ |
小球藻与PP | 活化能降低 | [ |
橄榄渣与聚氯乙烯(PVC) | 活化能降低 | [ |
花旗松与PE⁃LD | 活化能降低 | [ |
方法 | 不同生物质活化能值/kJ·mol-1 | 参考文献 |
---|---|---|
C⁃R法 | 玉米秸秆:68.8、稻秆:70.0 | [ |
Doyle法 | 玉米秸秆:189.0、稻秆:179.3 | |
最大速率法 | 玉米秸秆:185.1、稻秆:212.2 | |
DAEM | 玉米秸秆:210.0、稻秆:215.0 | |
KAS | 大丽花:220.12 | [ |
FWO | 大丽花:229.81 | |
Friedman法 | 大丽花:222.57 | |
DAEM | 大丽花:232.78 | |
阿伦尼乌斯方程 | 红松(纤维素为主):51.215 | [ |
木屑(木质素为主):14.779 | ||
秸秆(半纤维素为主):38.696 | ||
Friedman法 | 杏壳:188.22、小麦秸秆:220.77、杨树木屑:175.87 | [ |
FWO | 杏壳:178.56、小麦秸秆:200.51、杨树木屑:174.69 | |
DAEM | 杏壳:287.44、小麦秸秆:284.35、杨树木屑:309.96 |
方法 | 不同生物质活化能值/kJ·mol-1 | 参考文献 |
---|---|---|
C⁃R法 | 玉米秸秆:68.8、稻秆:70.0 | [ |
Doyle法 | 玉米秸秆:189.0、稻秆:179.3 | |
最大速率法 | 玉米秸秆:185.1、稻秆:212.2 | |
DAEM | 玉米秸秆:210.0、稻秆:215.0 | |
KAS | 大丽花:220.12 | [ |
FWO | 大丽花:229.81 | |
Friedman法 | 大丽花:222.57 | |
DAEM | 大丽花:232.78 | |
阿伦尼乌斯方程 | 红松(纤维素为主):51.215 | [ |
木屑(木质素为主):14.779 | ||
秸秆(半纤维素为主):38.696 | ||
Friedman法 | 杏壳:188.22、小麦秸秆:220.77、杨树木屑:175.87 | [ |
FWO | 杏壳:178.56、小麦秸秆:200.51、杨树木屑:174.69 | |
DAEM | 杏壳:287.44、小麦秸秆:284.35、杨树木屑:309.96 |
方法 | 单独生物质/塑料活化能值/kJ·mol-1 | 生物质与塑料共热解活化能值/kJ·mol-1 | 参考文献 |
---|---|---|---|
C⁃R | 木屑:112 PE⁃HD:517 PE⁃LD:270 PP:319.7 | 50木屑:50PE⁃HD(低温、中温、高温)=119、206、493 50木屑:50PE⁃LD(低温、中温、高温)=107、164、498 50木屑:50PP(低温、中温、高温)=128、249、426 | [ |
FWO | — | 废纸与PP=148.73±7.87 | [ |
Friedman | — | 废纸与PP=133.98±11.59 | |
C⁃R | — | 废纸与PP=143.74±13.83 | |
FWO | 纤维素:169.29 松木:185.57 PE⁃LD:249.97 | 纤维素与PE⁃LD(无催化剂)=201.57 纤维素与PE⁃LD(含催化剂)=168.81 松木与PE⁃LD(无催化剂)=224.34 松木与PE⁃LD(含催化剂)=173.23 | [ |
Friedman | 核桃壳:155.3 PS:208.6 桃核:146.4 | 核桃壳与PS=202.9 桃核与PS=195.7 | [ |
FWO | 核桃壳:159.2 PS:210.8 桃核:150.1 | 核桃壳与PS=201.0 桃核与PS=183.0 | |
KAS | 核桃壳:157.6 PS:209.0 桃核:147.8 | 核桃壳与PS=200.2 桃核与PS=181.2 | |
Starink | 核桃壳:158.0 PS:209.4 桃核:148.3 | 核桃壳与PS=200.6 桃核与PS=181.7 | |
C⁃R | — | 75浒苔:25PVC(第一阶段、第二阶段)=66.37、21.06 75浒苔:25PS(第一阶段、第二阶段)=38.72、114.43 50浒苔:50PVC(第一阶段、第二阶段)=88.63、32.26 50浒苔:50PS(第一阶段、第二阶段)=46.09、224.92 25浒苔:75PVC(第一阶段、第二阶段)=155.29、44.50 25浒苔:75PS(第一阶段、第二阶段)=145.07、37.81 | [ |
KAS | 泡桐木材:189±5 PP:149±4 PVC:152±5 PET:228±5 | 75泡桐木材:25PP=136±4 75泡桐木材:25PVC=158±5 75泡桐木材:25PET=136±4 50泡桐木材:50PP=137±4 50泡桐木材:50PVC=118±3 50泡桐木材:50PET=191±5 25泡桐木材:75PP=152±3 25泡桐木材:75PVC=153±4 25泡桐木材:75PET=203±4 | [ |
FWO | 泡桐木材:190±5 PP:153±5 PVC:155±4 PET:228±4 | 75泡桐木材:25PP=140±4 75泡桐木材:25PVC=160±4 75泡桐木材:25PET=140±3 50泡桐木材:50PP=141±5 50泡桐木材:50PVC=123±4 50泡桐木材:50PET=193±5 25泡桐木材:75PP=158±4 25泡桐木材:75PVC=156±5 25泡桐木材:75PET=211±5 |
方法 | 单独生物质/塑料活化能值/kJ·mol-1 | 生物质与塑料共热解活化能值/kJ·mol-1 | 参考文献 |
---|---|---|---|
C⁃R | 木屑:112 PE⁃HD:517 PE⁃LD:270 PP:319.7 | 50木屑:50PE⁃HD(低温、中温、高温)=119、206、493 50木屑:50PE⁃LD(低温、中温、高温)=107、164、498 50木屑:50PP(低温、中温、高温)=128、249、426 | [ |
FWO | — | 废纸与PP=148.73±7.87 | [ |
Friedman | — | 废纸与PP=133.98±11.59 | |
C⁃R | — | 废纸与PP=143.74±13.83 | |
FWO | 纤维素:169.29 松木:185.57 PE⁃LD:249.97 | 纤维素与PE⁃LD(无催化剂)=201.57 纤维素与PE⁃LD(含催化剂)=168.81 松木与PE⁃LD(无催化剂)=224.34 松木与PE⁃LD(含催化剂)=173.23 | [ |
Friedman | 核桃壳:155.3 PS:208.6 桃核:146.4 | 核桃壳与PS=202.9 桃核与PS=195.7 | [ |
FWO | 核桃壳:159.2 PS:210.8 桃核:150.1 | 核桃壳与PS=201.0 桃核与PS=183.0 | |
KAS | 核桃壳:157.6 PS:209.0 桃核:147.8 | 核桃壳与PS=200.2 桃核与PS=181.2 | |
Starink | 核桃壳:158.0 PS:209.4 桃核:148.3 | 核桃壳与PS=200.6 桃核与PS=181.7 | |
C⁃R | — | 75浒苔:25PVC(第一阶段、第二阶段)=66.37、21.06 75浒苔:25PS(第一阶段、第二阶段)=38.72、114.43 50浒苔:50PVC(第一阶段、第二阶段)=88.63、32.26 50浒苔:50PS(第一阶段、第二阶段)=46.09、224.92 25浒苔:75PVC(第一阶段、第二阶段)=155.29、44.50 25浒苔:75PS(第一阶段、第二阶段)=145.07、37.81 | [ |
KAS | 泡桐木材:189±5 PP:149±4 PVC:152±5 PET:228±5 | 75泡桐木材:25PP=136±4 75泡桐木材:25PVC=158±5 75泡桐木材:25PET=136±4 50泡桐木材:50PP=137±4 50泡桐木材:50PVC=118±3 50泡桐木材:50PET=191±5 25泡桐木材:75PP=152±3 25泡桐木材:75PVC=153±4 25泡桐木材:75PET=203±4 | [ |
FWO | 泡桐木材:190±5 PP:153±5 PVC:155±4 PET:228±4 | 75泡桐木材:25PP=140±4 75泡桐木材:25PVC=160±4 75泡桐木材:25PET=140±3 50泡桐木材:50PP=141±5 50泡桐木材:50PVC=123±4 50泡桐木材:50PET=193±5 25泡桐木材:75PP=158±4 25泡桐木材:75PVC=156±5 25泡桐木材:75PET=211±5 |
实验材料 | 对比项目 | 单独生物质/塑料热解 | 生物质与塑料共热解 | 参考文献 |
---|---|---|---|---|
生物质与塑料 | 热解残渣产量/% | 生物质热解残渣产量 30 PP热解残渣产量 5 PE⁃LD热解残渣产量 8 PE⁃HD热解残渣产量 15 | 50生物质∶50PP=7 50生物质∶50PE⁃LD=15 50生物质∶50PE⁃HD=8 | [ |
木质素与PE⁃HD | 酚类/糖类化合物产率/% | 木质素酚类化合物产率: 17.84 木质素糖类化合物产率: 5.17 | 酚类化合物产率:0.87 糖类化合物产率:0.22 | [ |
纤维素与塑料 | C2H4O(醛)面积百分比/% C4H6O2(酮)面积百分比/% C3H6(烯烃)面积百分比/% | 纤维素0.65; 塑料0 纤维素0.66; 塑料0 纤维素0; 塑料1.22 | 纤维素:塑料=(1∶1,1∶3) 0.31;0.22; 0.29;0.19; 1.67;1.85; | [ |
木屑和PE⁃LD | 固/液/气产物产率/% | 生物质 24.00/42.00/36.00 | 16.00/56.84/30.00 | [ |
杏仁壳与PE⁃HD | 固/液/气产物产率/% | 杏仁壳28.23/21.12/32.63 PE⁃HD 0/56.00/44.00 | 杏仁壳∶PE⁃HD=(1∶1,1∶2, 2∶1) 15.58/41.39/33.02 9.25/50.88/24.45 20.04/37.93/28.16 | [ |
松果与塑料 | 固(残渣)/液/气产物产率/% | 松果 36.6/8.9/15.9 PE 16.8/68.2/14.4 PP 14.7/72.6/12.7 PS 13.8/85.2/1.0 | 松果与PE 19.6/45.0/16.5 松果与PP 19.1/45.7/16.8 松果与PS 21.5/52.3/8.8 | [ |
纤维素与PE⁃LD | 固(残渣)/液/气/单环芳烃 产率/% | 生物质 16.8/36.82/31.46/47.67 PE⁃LD 7.12/82.68/10.2/85.6 | 5.57/58.02/19.84/51.58 | [ |
藻类与PE⁃LD | CH4产率/% | PE⁃LD产CH4率% 21.22 | 产CH4率:>30% | [ |
气体产物LHV/MJ·kg-1 | 生物质气体产物LHV 19.51 | 75藻类∶25PE⁃LD=18.69 50藻类∶50PE⁃LD=18.60 25藻类∶75PE⁃LD=18.11 | ||
木屑与PP | 固(残渣)/液/气产物产率/% | 木屑 6.3/71.0/15.5 PP 5.9/74.0/15.4 | 木屑∶PP=(9∶1,8∶2) 5.5/70.6/16.1 5.4/68.6/17.9 | [ |
玉米秸秆与PP | 固/液/气产物产率/% | 玉米秸秆固/液/气产物产率29.6/19.1/51.3 PP固/液/气产物产率0.2/57.1/42.7 | 玉米秸秆∶PP=(3∶1,1∶1,1∶3) 22.25/28.6/49.15 14.9/38.1/47.0 7.55/47.6/44.85 | [ |
液体产物HHV/kJ·kg-1 | 玉米秸秆液体产物HHV 28.44 PP液体产物HHV 46.83 | 玉米秸秆∶PP=(3∶1,1∶1,1∶3) 38.60/41.78/45.84 | ||
巨龙竹与PE⁃LD | 含氧化合物产率/% | 巨龙竹含氧化合物产率 31.58 | 含氧化合物产率 10.68 | [ |
生物质与塑料 | 生物炭产率/% | 稻草生物炭产率 34.1 木材生物炭产率 19.8 塑料生物炭产率 20.9 | 稻草∶塑料=(1∶1) 26.4 木材∶塑料=(1∶1) 31.8 | [ |
实验材料 | 对比项目 | 单独生物质/塑料热解 | 生物质与塑料共热解 | 参考文献 |
---|---|---|---|---|
生物质与塑料 | 热解残渣产量/% | 生物质热解残渣产量 30 PP热解残渣产量 5 PE⁃LD热解残渣产量 8 PE⁃HD热解残渣产量 15 | 50生物质∶50PP=7 50生物质∶50PE⁃LD=15 50生物质∶50PE⁃HD=8 | [ |
木质素与PE⁃HD | 酚类/糖类化合物产率/% | 木质素酚类化合物产率: 17.84 木质素糖类化合物产率: 5.17 | 酚类化合物产率:0.87 糖类化合物产率:0.22 | [ |
纤维素与塑料 | C2H4O(醛)面积百分比/% C4H6O2(酮)面积百分比/% C3H6(烯烃)面积百分比/% | 纤维素0.65; 塑料0 纤维素0.66; 塑料0 纤维素0; 塑料1.22 | 纤维素:塑料=(1∶1,1∶3) 0.31;0.22; 0.29;0.19; 1.67;1.85; | [ |
木屑和PE⁃LD | 固/液/气产物产率/% | 生物质 24.00/42.00/36.00 | 16.00/56.84/30.00 | [ |
杏仁壳与PE⁃HD | 固/液/气产物产率/% | 杏仁壳28.23/21.12/32.63 PE⁃HD 0/56.00/44.00 | 杏仁壳∶PE⁃HD=(1∶1,1∶2, 2∶1) 15.58/41.39/33.02 9.25/50.88/24.45 20.04/37.93/28.16 | [ |
松果与塑料 | 固(残渣)/液/气产物产率/% | 松果 36.6/8.9/15.9 PE 16.8/68.2/14.4 PP 14.7/72.6/12.7 PS 13.8/85.2/1.0 | 松果与PE 19.6/45.0/16.5 松果与PP 19.1/45.7/16.8 松果与PS 21.5/52.3/8.8 | [ |
纤维素与PE⁃LD | 固(残渣)/液/气/单环芳烃 产率/% | 生物质 16.8/36.82/31.46/47.67 PE⁃LD 7.12/82.68/10.2/85.6 | 5.57/58.02/19.84/51.58 | [ |
藻类与PE⁃LD | CH4产率/% | PE⁃LD产CH4率% 21.22 | 产CH4率:>30% | [ |
气体产物LHV/MJ·kg-1 | 生物质气体产物LHV 19.51 | 75藻类∶25PE⁃LD=18.69 50藻类∶50PE⁃LD=18.60 25藻类∶75PE⁃LD=18.11 | ||
木屑与PP | 固(残渣)/液/气产物产率/% | 木屑 6.3/71.0/15.5 PP 5.9/74.0/15.4 | 木屑∶PP=(9∶1,8∶2) 5.5/70.6/16.1 5.4/68.6/17.9 | [ |
玉米秸秆与PP | 固/液/气产物产率/% | 玉米秸秆固/液/气产物产率29.6/19.1/51.3 PP固/液/气产物产率0.2/57.1/42.7 | 玉米秸秆∶PP=(3∶1,1∶1,1∶3) 22.25/28.6/49.15 14.9/38.1/47.0 7.55/47.6/44.85 | [ |
液体产物HHV/kJ·kg-1 | 玉米秸秆液体产物HHV 28.44 PP液体产物HHV 46.83 | 玉米秸秆∶PP=(3∶1,1∶1,1∶3) 38.60/41.78/45.84 | ||
巨龙竹与PE⁃LD | 含氧化合物产率/% | 巨龙竹含氧化合物产率 31.58 | 含氧化合物产率 10.68 | [ |
生物质与塑料 | 生物炭产率/% | 稻草生物炭产率 34.1 木材生物炭产率 19.8 塑料生物炭产率 20.9 | 稻草∶塑料=(1∶1) 26.4 木材∶塑料=(1∶1) 31.8 | [ |
1 | 石元春. 决胜生物质 [J]. 中国农村科技, 2011,(3): 80. |
SHI Y C. Biomass win the future [J]. China Rural Science and Technology, 2011,(3): 80. | |
2 | 赵 良, 白建华, 辛颂旭, 等. 中国可再生能源发展路径研究 [J]. 中国电力, 2016, 49(1): 178⁃184. |
ZHAO L, BAI J H, XIN S X, et al. Study on development path of renewable energy in China [J]. Electric Power, 2016, 49(1): 178⁃184. | |
3 | ZADEH Z E, ABDULKHANI A, ABOELAZAYEM O, et al. Recent insights into lignocellulosic biomass pyrolysis: A critical review on pretreatment, characterization, and products upgrading [J]. Processes, 2020, 8(7): 799. |
4 | WANG Z, BURRA K G, LEI T, et al. Co⁃pyrolysis of waste plastic and solid biomass for synergistic production of biofuels and chemicals⁃A review [J]. Progress in Energy and Combustion Science, 2021, 84: 100899. |
5 | SAFAR M, LIN B⁃J, CHEN W⁃H, et al. Catalytic effects of potassium on biomass pyrolysis, combustion and torrefaction [J]. Applied Energy, 2019, 235: 346⁃355. |
6 | RAGAUSKAS A J, WILLIAMS C K, DAVISON B H, et al. The path forward for biofuels and biomaterials [J]. Science, 2006, 311(5760): 484⁃489. |
7 | KAN T, STREZOV V, EVANS T J. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters [J]. Renewable and Sustainable Energy Reviews, 2016, 57: 1126⁃1140. |
8 | ISAHAK W N R W, HISHAM M W M, YARMO M A, et al. A review on bio⁃oil production from biomass by using pyrolysis method [J]. Renewable and Sustainable Energy Reviews, 2012, 16(8): 5910⁃5923. |
9 | 马立南. 城市生活垃圾处置和利用技术分析 [J]. 清洗世界, 2021, 37(12): 132⁃133. |
MA L N. Disposal and utilization technology analysis of municipal solid waste [J]. Cleaning World, 2021, 37(12): 132⁃133. | |
10 | 李向辉. 废塑料热解机理及低温热解研究 [J]. 再生资源与循环经济, 2011, 4(6): 37⁃41. |
LI X H. Mechanism of thermal decomposition and low temperature pyrolysis of waste plastics [J]. Recyclable Resources and Circular Economy, 2011, 4(6): 37⁃41. | |
11 | HAMEED S, SHARMA A, PAREEK V, et al. A review on biomass pyrolysis models: Kinetic, network and mechanistic models [J]. Biomass and Bioenergy, 2019, 123: 104⁃122. |
12 | DHYANI V, BHASKAR T. A comprehensive review on the pyrolysis of lignocellulosic biomass [J]. Renewable Energy, 2018, 129: 695⁃716. |
13 | MOHAN D, PITTMAN C U, STEELE P H. Pyrolysis of wood/biomass for bio⁃oil: A critical review [J]. Energy & Fuels, 2006, 20(3): 848⁃889. |
14 | CZERNIK S, BRIDGWATER A V. Overview of applications of biomass fast pyrolysis oil [J]. Energy & Fuels, 2004, 18(2): 590⁃598. |
15 | SHADANGI K P, MOHANTY K. Co⁃pyrolysis of karanja and niger seeds with waste polystyrene to produce liquid fuel [J]. Fuel, 2015, 153: 492⁃498. |
16 | LU Q, LI W⁃Z, ZHU X⁃F. Overview of fuel properties of biomass fast pyrolysis oils [J]. Energy Conversion and Management, 2009, 50(5): 1 376⁃1 383. |
17 | SHARYPOV V I, MARIN N, BEREGOVTSOVA N G, et al. Co⁃pyrolysis of wood biomass and synthetic polymer mixtures. Part I: influence of experimental conditions on the evolution of solids, liquids and gases [J]. Journal of Analytical and Applied Pyrolysis, 2002, 64(1): 15⁃28. |
18 | SHARYPOV V I, MARIN N, BEREGOVTSOVA N G, et al. Co⁃pyrolysis of wood biomass and synthetic polymer mixtures. Part I: influence of experimental conditions on the evolution of solids, liquids and gases [J]. Journal of Analytical and Applied Pyrolysis, 2002, 64(1): 15⁃28. |
19 | MARIN N, COLLURA S, SHARYPOV V I, et al. Copyrolysis of wood biomass and synthetic polymers mixtures. Part II: characterisation of the liquid phases [J]. Journal of Analytical and Applied Pyrolysis, 2002, 65(1): 41⁃55. |
20 | 孙小东, 曹 鼎, 胡倩倩, 等. 废弃塑料的化学回收资源化利用研究进展 [J]. 中国塑料, 2021, 35(8): 44⁃54. |
SUN X D, CAO D, HU Q Q, et al. Progress in chemical recovery and resource utilization of waste plastics [J]. China Plastics, 2021, 35(8): 44⁃54. | |
21 | ZHANG L, BAO Z, XIA S, et al. Catalytic pyrolysis of biomass and polymer wastes [J]. Catalysts, 2018, 8(12): 659. |
22 | CHEN Z, WANG M, JIANG E, et al. Pyrolysis of torrefied biomass [J]. Trends in Biotechnology, 2018, 36(12): 1 287⁃1 298. |
23 | 汤元君, 李 璇, 董 隽, 等. 废弃PVC塑料热解过程多尺度反应动力学特性研究 [J]. 中国塑料, 2022, 36(5): 89⁃98. |
TANG Y J, LI X, DONG J, et al. Multiscale thermogravimetric kinetics of waste polyvinyl chloride plastics [J] China Plastics, 2022, 36(5): 89⁃98. | |
24 | S⁃YOH, SEO Y⁃D. Polymer/biomass⁃derived biochar for use as a sorbent and electron transfer mediator in environmental applications [J]. Bioresource Technology, 2016, 218: 77⁃83. |
25 | LIU X, LI X, LIU J, et al. Study of high density polyethylene (HDPE) pyrolysis with reactive molecular dynamics [J]. Polymer Degradation and Stability, 2014, 104: 62⁃70. |
26 | 周利民, 王一平, 黄群武, 等. 生物质/塑料共热解热重分析及动力学研究 [J]. 太阳能学报, 2007, 28(9): 979⁃983. |
ZHOU L M, WANG Y P, HUANG Q W, et al. TG analysis and kinetics of biomass/plastic co⁃pyrolysis [J].Acta Engrgiae Solaris Sinica, 2007, 28(9): 979⁃983. | |
27 | XUE Y, ZHOU S, BROWN R C, et al. Fast pyrolysis of biomass and waste plastic in a fluidized bed reactor [J]. Fuel, 2015, 156: 40⁃46. |
28 | 苏德仁, 王亚琢, 范洪刚, 等. 木质素与高密度聚乙烯共热解特性研究 [J]. 新能源进展, 2020, 8(6): 462⁃469. |
SU D R, WANG Y Z, FAN H G, et al. Study on the co⁃pyrolysis characteristics of lignin and high⁃density polyethylene [J]. Advances in New and Renewable Energy, 2020, 8(6): 462⁃469. | |
29 | SURIAPPARAO D V, GAUTAM R, RAO JEERU L. Analysis of pyrolysis index and reaction mechanism in microwave⁃assisted ex⁃situ catalytic co⁃pyrolysis of agro⁃residual and plastic wastes [J]. Bioresource Technology, 2022, 357: 127357. |
30 | JIANG L, ZHOU Z, XIANG H, et al. Characteristics and synergistic effects of co⁃pyrolysis of microalgae with polypropylene [J]. Fuel, 2021, 314: 122765. |
31 | ABOULKAS A, KEL HARFI. Co⁃pyrolysis of olive residue with poly(vinyl chloride) using thermogravimetric analysis [J]. Journal of Thermal Analysis and Calorimetry, 2008, 95(3): 1 007⁃1 013. |
32 | ZHANG X, LEI H, ZHU L, et al. Thermal behavior and kinetic study for catalytic co⁃pyrolysis of biomass with plastics [J]. Bioresource Technology, 2016, 220: 233⁃238. |
33 | YUAN H, FAN H, SHAN R, et al. Study of synergistic effects during co⁃pyrolysis of cellulose and high⁃density polyethylene at various ratios [J]. Energy Conversion and Management, 2018, 157: 517⁃526. |
34 | 刘世奇, 张素平, 于泰莅, 等. 生物质与塑料共热解协同作用研究 [J]. 林产化学与工业, 2019, 39(3): 34⁃42. |
LIU S Q, ZHANG S P, YU T L, et al. Synergistic effect of co⁃pyrolysis of biomass and plastics [J]. Chemistry and Industry of Forest Products, 2019, 39(3): 34⁃42. | |
35 | MENG F, ZHOU Y, LIU J, et al. Thermal decomposition behaviors and kinetics of carrageenan⁃poly vinyl alcohol bio⁃composite film [J]. Carbohydrate Polymers, 2018, 201: 96⁃104. |
36 | ZOU J, HU H, XUE Y, et al. Exploring kinetic mechanisms of biomass pyrolysis using generalized logistic mixture model[J/OL]. Energy Conversion and Management, 2022, 258: 115522. |
37 | AçıKALıN K. Determination of kinetic triplet, thermal degradation behaviour and thermodynamic properties for pyrolysis of a lignocellulosic biomass [J]. Bioresource Technology, 2021, 337: 125438. |
38 | 谢腾, 赵立欣, 姚宗路, 等. 农业生物质与塑料共热解技术进展[J/OL]. 化工进展: 1⁃11. |
XIE T, ZHAO L X, YAO Z L, et al. Progress in the copyrolysis technology of agricultural biomass and plastics[J/OL]. Chemical Industry and Engineering Progress: 1⁃11. | |
39 | 宋春财, 胡浩权, 朱盛维, 等. 生物质秸秆热重分析及几种动力学模型结果比较 [J]. 燃料化学学报, 2003 (4): 311⁃316. |
SONG C C, HU H Q, ZHU S W, et al. Comparison of thermal weight analysis and several dynamic model results of biomass straw[J]. Journal of Fuel Chemistry and Technology, 2003 (4): 311⁃316. | |
40 | MISHRA R K, MOHANTY K, WANG X. Pyrolysis kinetic behavior and Py⁃GC–MS analysis of waste dahlia flowers into renewable fuel and value⁃added chemicals [J]. Fuel, 2020, 260: 116338. |
41 | 索 娅, 张建民, 屈星星, 等. 能源作物与传统生物质热重实验的对比研究 [J]. 洁净煤技术, 2007,(2): 55⁃8,13. |
SUO Y, ZHANG J M, QU X X, et al. The study of TG experiment for energy crops and traditional biomass [J]. Clean Coal Technology, 2007 (2): 55⁃58,13. | |
42 | 乔沛, 郭子千, 张玉明, 等. 基于分布活化能模型法的农林生物质热解动力学对比研究 [J]. 燃料化学学报,2022,50(7):808⁃823. |
QIAO P, GUO Z Q, ZHANG Y M, et al. Comparative study on pyrolysis kinetics of agroforestry biomass based on distributed activation energy model method [J]. Journal of Fuel Chemistry and Technology,2022,50(7):808⁃823. | |
43 | GALIWANGO E, GABBAR HA. Synergistic interactions, kinetic and thermodynamic analysis of co⁃pyrolysis of municipal paper and polypropylene waste [J]. Waste Management, 2022, 146: 86⁃93. |
44 | VO T A, TRAN Q K, LY H V, et al. Co⁃pyrolysis of lignocellulosic biomass and plastics: A comprehensive study on pyrolysis kinetics and characteristics [J]. Journal of Analytical and Applied Pyrolysis, 2022, 163: 105464. |
45 | ÖZSIN G, PüTüN A E. Insights into pyrolysis and co⁃pyrolysis of biomass and polystyrene: Thermochemical behaviors, kinetics and evolved gas analysis [J]. Energy Conversion and Management, 2017, 149: 675⁃685. |
46 | BURRA K G, GUPTA A K. Kinetics of synergistic effects in co⁃pyrolysis of biomass with plastic wastes [J]. Applied Energy, 2018, 220: 408⁃418. |
47 | 王华山, 王跃康, 张歆悦, 等. PVC、PS与浒苔共热解过程分析及动力学研究 [J]. 热力发电, 2020, 49(7): 84⁃92. |
WANG H S, WANG Y K, ZHANG X Y, et al. Co⁃pyrolysis process and kinetics of PVC, PS and brassica [J]. Thermal Power Generation, 2020, 49(7): 84⁃92. | |
48 | ZHOU L, ZOU H, WANG Y, et al. Effect of potassium on thermogravimetric behavior and co⁃pyrolytic kinetics of wood biomass and low density polyethylene [J]. Renewable Energy, 2017, 102 Part A: 134⁃141. |
49 | ZHENG Y, TAO L, YANG X, et al. Study of the thermal behavior, kinetics, and product characterization of biomass and low⁃density polyethylene co⁃pyrolysis by thermogravimetric analysis and pyrolysis⁃GC/MS [J]. Journal of Analytical and Applied Pyrolysis, 2018, 133: 185⁃197. |
50 | SALVILLA J N V, OFRASIO B I G, ROLLON A P, et al. Synergistic co⁃pyrolysıs of polyolefin plastics with wood and agricultural wastes for biofuel production [J]. Applied Energy, 2020, 279: 115668. |
51 | CHEN L, WANG S, MENG H, et al. Synergistic effect on thermal behavior and char morphology analysis during co⁃pyrolysis of paulownia wood blended with different plastics waste [J]. Applied Thermal Engineering, 2016, 111: 834⁃846. |
52 | ÇEPELIOĞULLAR Ö, PüTüN A E. Products characterization study of a slow pyrolysis of biomass⁃plastic mixtures in a fixed⁃bed reactor [J]. Journal of Analytical and Applied Pyrolysis, 2014, 110: 363⁃374. |
53 | SAJDAK M. Impact of plastic blends on the product yield from co⁃pyrolysis of lignin⁃rich materials [J]. Journal of Analytical and Applied Pyrolysis, 2017, 124: 415⁃425. |
54 | BREBU M, UCAR S, VASILE C, et al. Co⁃pyrolysis of pine cone with synthetic polymers [J]. Fuel, 2010, 89(8): 1 911⁃1 918. |
55 | TANG Z, CHEN W, CHEN Y, et al. Co⁃pyrolysis of microalgae and plastic: Characteristics and interaction effects [J]. Bioresource Technology, 2018, 274: 145⁃152. |
56 | KAI X, YANG T, SHEN S, et al. TG⁃FTIR⁃MS study of synergistic effects during co⁃pyrolysis of corn stalk and high⁃density polyethylene (HDPE) [J]. Energy Conversion and Management, 2019, 181: 202⁃213. |
57 | KAI X, LI R, YANG T, et al. Study on the co⁃pyrolysis of rice straw and high density polyethylene blends using TG⁃FTIR⁃MS [J]. Energy Conversion and Management, 2017, 146: 20⁃33. |
58 | ALVAREZ J, KUMAGAI S, WU C, et al. Hydrogen production from biomass and plastic mixtures by pyrolysis⁃gasification [J]. International Journal of Hydrogen Energy, 2014, 39(21): 10 883⁃10 891. |
59 | DYER A C, NAHIL M A, WILLIAMS P T. Catalytic co⁃pyrolysis of biomass and waste plastics as a route to upgraded bio⁃oil [J]. Journal of the Energy Institute, 2021, 97: 27⁃36. |
60 | SOGANCIOGLU M, YEL E, AHMETLI G. Pyrolysis of waste high density polyethylene (HDPE) and low density polyethylene (LDPE) plastics and production of epoxy composites with their pyrolysis chars [J]. Journal of Cleaner Production, 2017, 165: 369⁃381. |
61 | CHATTOPADHYAY J, PATHAK T S, SRIVASTAVA R, et al. Catalytic co⁃pyrolysis of paper biomass and plastic mixtures (HDPE (high density polyethylene), PP (polypropylene) and PET (polyethylene terephthalate)) and product analysis [J]. Energy, 2016, 103: 513⁃521. |
62 | KUMAGAI S, FUJITA K, KAMEDA T, et al. Interactions of beech wood–polyethylene mixtures during co⁃pyrolysis [J]. Journal of Analytical and Applied Pyrolysis, 2016, 122: 531⁃540. |
63 | WU F, BEN H, YANG Y, et al. Effects of different conditions on co⁃pyrolysis behavior of corn stover and polypropylene [J]. Polymers, 2020, 12(4): 973. |
64 | RAZZAQ M, ZEESHAN M, QAISAR S, et al. Investigating use of metal⁃modified HZSM⁃5 catalyst to upgrade liquid yield in co⁃pyrolysis of wheat straw and polystyrene [J]. Fuel, 2019, 257: 116119. |
65 | HASSAN E B, ELSAYED I, ESEYIN A. Production high yields of aromatic hydrocarbons through catalytic fast pyrolysis of torrefied wood and polystyrene [J]. Fuel, 2016, 174: 317⁃324. |
66 | ZHAO Y, WANG Y, DUAN D, et al. Fast microwave⁃assisted ex⁃catalytic co⁃pyrolysis of bamboo and polypropylene for bio⁃oil production [J]. Bioresource Technology, 2017, 249: 69⁃75. |
67 | FEKHAR B, MISKOLCZI N, BHASKAR T, et al. Co⁃pyrolysis of biomass and plastic wastes: investigation of apparent kinetic parameters and stability of pyrolysis oils [J]. IOP Conference Series: Earth and Environmental Science, 2018, 154: 012022. |
68 | ÖNAL E, UZUN B B, PüTüN A E. Bio⁃oil production via co⁃pyrolysis of almond shell as biomass and high density polyethylene [J]. Energy Conversion and Management, 2014, 78: 704⁃710. |
69 | AKANCHA N, KUMARI N, SINGH R K. Co⁃pyrolysis of waste polypropylene and rice bran wax‒ production of biofuel and its characterization [J]. Journal of the Energy Institute, 2018, doi:10.1016/j.joei.2018.07.011 . |
70 | BERNARDO M, LAPA N, GONçALVES M, et al. Physico⁃chemical properties of chars obtained in the co⁃pyrolysis of waste mixtures [J]. Journal of Hazardous Materials, 2012, doi:10.1016/j.jhazmat.2012.03.077 . |
71 | 郑云武, 王继大, 刘 灿, 等. 改性HZSM⁃5催化生物质与塑料热解制备芳烃和生物炭 [J]. 农业工程学报, 2020, 36(17): 190⁃201. |
ZHENG Y W, WANG J D, LIU C, et al. Preparation of aromatic and bio⁃char by pyrolysis of biomass and plastics catalyzed by modified HZSM⁃5[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(17): 190⁃201. | |
72 | WANG X, MA D, JIN Q, et al. Synergistic effects of biomass and polyurethane co⁃pyrolysis on the yield, reactivity, and heating value of biochar at high temperatures [J]. Fuel Processing Technology, 2019, 194: 106127. |
73 | WANG Z, LI J, BURRA K G, et al. Synergetic effect on CO2⁃Assisted co⁃gasification of biomass and plastics [J]. Journal of Energy Resources Technology, 2021, 143(3):031901(1⁃9). |
74 | RATHNAYAKE D, EHIDIAMHEN P O, EGENE C E, et al. Investigation of biomass and agricultural plastic co⁃pyrolysis: Effect on biochar yield and properties [J]. Journal of Analytical and Applied Pyrolysis, 2021, 155: 105029. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||