京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2022, Vol. 36 ›› Issue (10): 178-189.DOI: 10.19491/j.issn.1001-9278.2022.10.024
• Review • Previous Articles Next Articles
HU Wanxin, YIN Hongfeng(), YUAN Hudie, TANG Yun, REN Xiaohu
Received:
2022-05-27
Online:
2022-10-26
Published:
2022-10-27
CLC Number:
HU Wanxin, YIN Hongfeng, YUAN Hudie, TANG Yun, REN Xiaohu. Research progress in fiber⁃reinforced⁃resin matrix microwave absorbing composites[J]. China Plastics, 2022, 36(10): 178-189.
名称 | 范围 | 应用 |
---|---|---|
超高频 | 300 MHz~1 GHz | 移动通信、搜索雷达 |
L波段 | 1~2 GHz | 远程对空警戒雷达、空中交通管制雷达、卫星导航系统、搜索跟踪雷达 |
S波段 | 2~4 GHz | 机场终端监视雷达、中距离警戒雷达、跟踪雷达、卫星通信、气象雷达 |
C波段 | 4~8 GHz | 手持战场监视、导弹控制、地面监视雷达、跟踪雷达、卫星电视广播和小型卫星地面站、气象雷达 |
X波段 | 8~12 GHz | 短距离火控雷达、成像雷达、警用测速雷达 |
Ku波段 | 12~18 GHz | 卫星通信和高分辨的测量 |
K波段 | 18~27 GHz | 卫星通信和高分辨的测量 |
Ka波段 | 27~40 GHz | 卫星通信和高分辨的测量 |
名称 | 范围 | 应用 |
---|---|---|
超高频 | 300 MHz~1 GHz | 移动通信、搜索雷达 |
L波段 | 1~2 GHz | 远程对空警戒雷达、空中交通管制雷达、卫星导航系统、搜索跟踪雷达 |
S波段 | 2~4 GHz | 机场终端监视雷达、中距离警戒雷达、跟踪雷达、卫星通信、气象雷达 |
C波段 | 4~8 GHz | 手持战场监视、导弹控制、地面监视雷达、跟踪雷达、卫星电视广播和小型卫星地面站、气象雷达 |
X波段 | 8~12 GHz | 短距离火控雷达、成像雷达、警用测速雷达 |
Ku波段 | 12~18 GHz | 卫星通信和高分辨的测量 |
K波段 | 18~27 GHz | 卫星通信和高分辨的测量 |
Ka波段 | 27~40 GHz | 卫星通信和高分辨的测量 |
材料 | 测试频率范围/GHz | 反射损耗(RL)/dB | 带宽(RL≤-10 dB)/GHz | 结构 | 文献 |
---|---|---|---|---|---|
石墨/GF/树脂 | 12.4~18 | -16.8 | 3 | 单层结构 | [ |
CB/GF/EP | 8.2~12.4 | -21 | 3.6 | 单层结构 | [ |
MWCNT/GF/EP | 12~18 | -29.2 | 4.91 | 单层结构 | [ |
CIP/CNT/PVA | 2~18 | -50 | 6.3 | 单层结构 | [ |
FeCuNbSiB/GF/EP | 2~18 | -30.5 | 14.8 | 单层结构 | [ |
CB/SiO2f/PI | 8~18 | -46.18 | 3.95 | 双层结构 | [ |
MWCNT/Fe3O4 NPs/GF/EP | 8.2~12.4 | -45.7 | X波段 | 双层结构 | [ |
ACFFS/GF/CF/EP | 2~18 | -38.54 | 11.33 | 三层结构 | [ |
MWCNT/GF/EP | 8.2~12.4 | -61.9 | X波段 | 多层结构 | [ |
MWCNT/GF/EP | 2~18 | -36 | 13 | 蜂窝芯结构 | [ |
MWCNT/CI/GF/CF/EP | 2~40 | -46 | 18.37 | 蜂窝芯结构 | [ |
GFRP/NCF | 4~18 | -24 | 11 | 泡沫芯结构 | [ |
GF/CF/PVC/EP | 2~18 | -18 | 16 | 泡沫/FSS结构 | [ |
SEBS/CB/石墨 | 1~18 | -38 | 15.69 | 波纹芯结构 | [ |
MWCNT/CI/GF/CF/EP | 2~30 | -34 | 16.31 | 晶格芯结构 | [ |
RGO/GF/EP | 8~18 | -32 | X~Ku波段 | FSS | [ |
碳材料/ABS | 2~18 | - | 12.7 | 金字塔结构 | [ |
材料 | 测试频率范围/GHz | 反射损耗(RL)/dB | 带宽(RL≤-10 dB)/GHz | 结构 | 文献 |
---|---|---|---|---|---|
石墨/GF/树脂 | 12.4~18 | -16.8 | 3 | 单层结构 | [ |
CB/GF/EP | 8.2~12.4 | -21 | 3.6 | 单层结构 | [ |
MWCNT/GF/EP | 12~18 | -29.2 | 4.91 | 单层结构 | [ |
CIP/CNT/PVA | 2~18 | -50 | 6.3 | 单层结构 | [ |
FeCuNbSiB/GF/EP | 2~18 | -30.5 | 14.8 | 单层结构 | [ |
CB/SiO2f/PI | 8~18 | -46.18 | 3.95 | 双层结构 | [ |
MWCNT/Fe3O4 NPs/GF/EP | 8.2~12.4 | -45.7 | X波段 | 双层结构 | [ |
ACFFS/GF/CF/EP | 2~18 | -38.54 | 11.33 | 三层结构 | [ |
MWCNT/GF/EP | 8.2~12.4 | -61.9 | X波段 | 多层结构 | [ |
MWCNT/GF/EP | 2~18 | -36 | 13 | 蜂窝芯结构 | [ |
MWCNT/CI/GF/CF/EP | 2~40 | -46 | 18.37 | 蜂窝芯结构 | [ |
GFRP/NCF | 4~18 | -24 | 11 | 泡沫芯结构 | [ |
GF/CF/PVC/EP | 2~18 | -18 | 16 | 泡沫/FSS结构 | [ |
SEBS/CB/石墨 | 1~18 | -38 | 15.69 | 波纹芯结构 | [ |
MWCNT/CI/GF/CF/EP | 2~30 | -34 | 16.31 | 晶格芯结构 | [ |
RGO/GF/EP | 8~18 | -32 | X~Ku波段 | FSS | [ |
碳材料/ABS | 2~18 | - | 12.7 | 金字塔结构 | [ |
1 | Liu Heguang, Wu Shaoqing, You Caiyin, et al. Recent progress in morphological engineering of carbon materials for electromagnetic interference shielding [J]. Carbon, 2021, 172: 569⁃96. |
2 | Muhammed Kallumottakkal, Hussein Mousa I., Iqbal Muhammad Z. Recent progress of 2D nanomaterials for application on microwave absorption: a comprehensive study [J]. Frontiers in Materials, 2021, 8: 1⁃19. |
3 | Li Q, Zhang Z, Qi L, et al. Toward the application of high frequency electromagnetic wave absorption by carbon nanostructures[J]. Adv Sci (Weinh), 2019, 6(8): 1801057. |
4 | Athira Raveendran, Mailadil Thomas Sebastian, Sujith Raman. Applications of microwave materials: a review [J]. Journal of Electronic Materials, 2019, 48(5): 2 601⁃2 634. |
5 | 张明伟, 曲冠达, 庞梦瑶. 电磁屏蔽机理及涂敷/结构型吸波复合材料研究进展 [J]. 材料导报, 2021, 35(Z1): 62⁃70. |
ZHANG M W, QU G D, PANG M Y, et al. Research progress of electromagnetic shielding mechanism and coated/structural absorbing composite materials[J]. Mterials Reports, 2021, 35(Z1):62⁃70. | |
6 | Vildan Özkan, Ahmet Yapici, Muharrem Karaaslan, et al. Electromagnetic scattering properties of MWCNTs/graphene doped epoxy layered with PVC nanofiber/E⁃glass composites [J]. Journal of Electronic Materials, 2020, 49(3): 2 249⁃2 256. |
7 | D M Charles Andrew, Rider Andrew N, Brown Sonya A,et al. Multifunctional magneto⁃polymer matrix composites for electromagnetic interference suppression, sensors and actuators [J]. Progress in Materials Science, 2021, 115: 100705. |
8 | Laís Vasconcelos Da Silva, Sérgio Henrique Pezzin, Mirabel Cerqueira Rezende, et al. Glass fiber/carbon nanotubes/epoxy three⁃component composites as radar absorbing materials [J]. Polymer Composites, 2016, 37(8): 2 277⁃ 284. |
9 | Ilbeom Choi, Lee Dongyoung, Dai Gil Lee. Radar absorbing composite structures dispersed with nano⁃conductive particles [J]. Composite Structures, 2015, 122: 23⁃30. |
10 | Shan Liu, Qin Shuhao, Yue Jiang, et al. Lightweight high⁃performance carbon⁃polymer nanocomposites for electromagnetic interference shielding [J]. Composites Part A: Applied Science and Manufacturing, 2021, 145: 106376. |
11 | Kamila Kunrath, Eduardo Fischer Kerche, Mirabel Cerqueira Rezende, et al. Mechanical, electrical, and electromagnetic properties of hybrid graphene/glass fiber/epoxy composite [J]. Polymers and Polymer Composites, 2019, 27(5): 262⁃267. |
12 | Chinedum Ogonna Mgbemena, Li Danning, Lin Meng⁃Fang, et al. Accelerated microwave curing of fibre⁃reinforced thermoset polymer composites for structural applications: A review of scientific challenges [J]. Composites Part A: Applied Science and Manufacturing, 2018, 115: 88⁃103. |
13 | Shuang Zhang, Zhai Yinghao, Yong Zhang. Microwave⁃absorbing performance and mechanical properties of poly(vinyl chloride)/acrylonitrile⁃butadiene rubber thermoplastic elastomers filled with multiwalled carbon nanotubes and silicon carbide [J]. Journal of Applied Polymer Science, 2013, 130(1): 345⁃51. |
14 | Hua Qiu, Xian Luo, Jin Wang, et al. Synthesis and characterization of ternary polyaniline/barium ferrite/reduced graphene oxide composite as microwave⁃absorbing material[J]. Journal of Electronic Materials, 2019, 48(7): 4 400⁃4 408. |
15 | Wu Nannan, Xu Dongmei, Zhou Wang, et al. Achieving superior electromagnetic wave absorbers through the novel metal⁃organic frameworks derived magnetic porous carbon nanorods [J]. Carbon, 2019, 145: 433⁃444. |
16 | Wei Chen, Zheng Xiangnan, He Xingyang, et al. Achieving full effective microwave absorption in X band by double⁃layered design of glass fiber epoxy composites containing MWCNTs and Fe3O4 NPs [J]. Polymer Testing, 2020, 86: 106448. |
17 | 李泽斌, 王海露, 袁承勋. 等离子体复合雷达吸波材料的电磁特性 [J]. 电波科学学报, 2018, 33(6): 695⁃700. |
LI Z B, WANG H L, YUAN C X, et al. Electronmagnetic characteristics of plasma combining radar absorbing material [J]. Chinese Journal of Radio Science, 2018, 33(6):695⁃700. | |
18 | Xiang Li, Yu Lujun, Yu Laiming, et al. Chiral polyaniline with superhelical structures for enhancement in microwave absorption [J]. Chemical Engineering Journal, 2018, 352: 745⁃55. |
19 | Sun Genban, Hong Wu, Liao Qingliang, et al. Enhanced microwave absorption performance of highly dispersed CoNi nanostructures arrayed on graphene [J]. Nano Research, 2018, 11(5): 2 689⁃2 704. |
20 | Sajid Ur Rehman, Jian Liu, Rida Ahmed, et al. Synthesis of composite of ZnO spheres with polyaniline and their microwave absorption properties [J]. Journal of Saudi Chemical Society, 2019, 23(4): 385⁃391. |
21 | 胡 睿, 杨伟涛, 石先锐. 涂覆型电磁吸波复合材料的研究进展 [J]. 中国胶粘剂, 2018, 27(10): 56⁃60. |
HU R, YANG W T, SHI X R, et al. Research progress of coated electromagnetic wave absorbing composite [J]. China Adhesives, 2018, 27(10): 56⁃60 | |
22 | Michael Green, Chen Xiaobo. Recent progress of nanomaterials for microwave absorption [J]. Journal of Materiomics, 2019, 5(4): 503⁃41. |
23 | Jing Yan, Ying Huang, Chao Wei, et al. Covalently bonded polyaniline/graphene composites as high⁃performance electromagnetic (EM) wave absorption materials [J]. Composites Part A: Applied Science and Manufacturing, 2017, 99: 121⁃128. |
24 | Wan Zhendong, Ma Huiling, Hou Shikun, et al. Fabrication of hollow microhemisphere⁃like polypyrrole and carbon dielectric materials by sol⁃gel template method for enhanced microwave absorption [J]. Journal of Materials Science: Materials in Electronics, 2021, 32(8): 10 991⁃11 003. |
25 | Gopal Kulkarni, Priyanka Kandesar, Ninad Velhal, et al. Exceptional electromagnetic interference shielding and microwave absorption properties of room temperature synthesized polythiophene thin films with double negative characteristics (DNG) in the Ku⁃band region [J]. Chemical Engineering Journal, 2019, 355: 196⁃207. |
26 | 李天天, 夏 龙, 黄小萧. 介电损耗型微波吸收材料的研究进展 [J]. 材料工程, 2021, 49(6): 1⁃13. |
LI T T, XIA L, HUANG X X, et al. Progress in dielectric loss microwave absorbing materials[J]. Journal of Materials Engineering, 2021, 49(6):1⁃13. | |
27 | Jae⁃Hun Choi, Young⁃Woo Nam, Min⁃Su Jang, et al. Characteristics of silicon carbide fiber⁃reinforced composite for microwave absorbing structures [J]. Composite Structures, 2018, 202: 290⁃295. |
28 | Jing Ran, Guo Mingjie, Li Zhong, et al. In situ growth of BaTiO3 nanotube on the surface of reduced graphene oxide: A lightweight electromagnetic absorber [J]. Journal of Alloys and Compounds, 2019, 773: 423⁃431. |
29 | Qi Jia, Wang Wenzhi, Jing Zhao, et al. Synthesis and characterization of TiO2/polyaniline/graphene oxide bouquet⁃like composites for enhanced microwave absorption performance [J]. Journal of Alloys and Compounds, 2017, 710: 717⁃724. |
30 | 王彩霞, 刘元军. 磁损耗型吸波材料的发展现状 [J]. 丝绸, 2021, 58(2): 27⁃34. |
WANG C X, LIU Y J. Developments status of magnetic loss wave⁃absorbing materials[J]. Journal of Silk, 2021, 58(2):27⁃34. | |
31 | Heijun Jeong, Hai Le Dinh, Daecheon Lim, et al. Reconfigurable metasurfaces for frequency selective absorption [J]. Advanced Optical Materials, 2020, 8(13): 1902182. |
32 | Sowmya Sankaran, Kalim Deshmukh, AhamedM Basheer, et al. Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: a review [J]. Composites Part A: Applied Science and Manufacturing, 2018, 114: 49⁃71. |
33 | Jayalakshmi C G, Inamdar A, Anand A, et al. Polymer matrix composites as broadband radar absorbing structures for stealth aircrafts [J]. Journal of Applied Polymer Science, 2019, 136(47241):1⁃21. |
34 | 邓京兰. 结构吸波复合材料的吸波性能 [J]. 材料科学与工程学报, 2010, 28(2): 1673⁃2812(010)02⁃0161⁃04. |
DENG J L. Microwave absorbing properties of a structural material[J]. Journal of Materials Science and Engineering, 2010, 28(2): 1 673⁃2 812. | |
35 | Jae⁃Hwan Shin, Hong⁃Kyu Jang, Won⁃Ho Choi, et al. Design and verification of a single slab RAS through mass production of glass/MWNT added epoxy composite prepreg [J]. Journal of Applied Polymer Science, 2015, 132(22): 42019. |
36 | Peng Xuewei, Qi Zhang, Yong Xie. Preparation and wave absorption of carbon nanotube/polyvinyl alcohol/carbonyl iron powder composites [J]. Carbon Techniques, 2020, 2(39): 39⁃43. |
37 | Zheng Xia⁃Lian, Zhu Zheng⁃Hou, Li Xiao⁃Min. The absorbing properties of Fe73.5Cu1Nb3Si13.5B9 amorphous powder/S⁃glass fiber⁃reinforced epoxy composite panels [J]. Rare Metals, 2013, 32(3): 294⁃298. |
38 | Zhou Liu, Wang Yuankang, Li Kewei, et al. Broadband microwave absorber composed of sandwich structure with a lossless medium as the intermediate layer [J]. Journal of Magnetism and Magnetic Materials, 2022, 548: 168963. |
39 | Fabrizio Marra, Julian Lecini, Alessio Tamburrano, et al. Broadband Electromagnetic Absorbing Structures Made of Graphene/Glass⁃Fiber/Epoxy Composite [J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(2): 590⁃601. |
40 | 张雪霏, 周金堂, 姚正军. CIP/GF/CF/EP吸波复合材料的制备及力学性能 [J]. 材料工程, 2019, 47(10): 141⁃147. |
ZHANG X F, ZHOU J T, YAO Z J,et al. Preparation and mechanical property of CIP/GF/CF/EP absorbing composites[J]. Journal of materials engineering, 2019, 47(10):141⁃147. | |
41 | Dong Jie, Zhou Wancheng, Yuchang Qing, et al. Dielectric and microwave absorption properties of CB doped SiO2f/PI double⁃layer composites [J]. Ceramics International, 2018, 44(12): 14 007⁃14 012. |
42 | 姚 斌, 夏少旭, 欧湘慧, 等. GF / CF / ACFFS 多层复合材料的吸波性能研究 [J]. 复合材料, 2016, 4: 26⁃30. |
YAO B, XIA S X, OU X H, et al. Microwave absorption property of GF/CE/ACFFS multilayer composites [J]. Composite Materials, 2016, 4: 26⁃30. | |
43 | Se⁃Won Eun, Won⁃Ho Choi, Hong⁃Kyu Jang, et al. Effect of delamination on the electromagnetic wave absorbing performance of radar absorbing structures [J]. Composites Science and Technology, 2015, 116: 18⁃25. |
44 | Gao Xiaoyan, Jiang Li, Yuan Gao, et al. Microwave absorbing properties of alternating multilayer composites consisting of poly (vinyl chloride) and multi⁃walled carbon nanotube filled poly (vinyl chloride) layers [J]. Composites Science and Technology, 2016, 130: 10⁃19. |
45 | Liu Y, Lu Q, Wang J, et al. A flexible sandwich structure carbon fiber cloth with resin coating composite improves electromagnetic wave absorption performance at low frequency[J]. Polymers (Basel), 2022, 14(2): 14 233. |
46 | Li S, Huang H, Wu S, et al. Study on microwave absorption performance enhancement of metamaterial/honeycomb sandwich composites in the low frequency band [J]. Polymers (Basel), 2022, 14(7): 141 424. |
47 | Pang Huifang, Duan Yuping, Dai Xuhao, et al. The electromagnetic response of composition⁃regulated honeycomb structural materials used for broadband microwave absorption [J]. Journal of Materials Science & Technology, 2021, 88: 203⁃214. |
48 | Wen Zheng, Li Yiru, Xie Zhiyuan, et al. X⁃band full absorbing multi⁃layer foam with lightweight and flexible performance [J]. Composites Part B: Engineering, 2022, 231: 109587. |
49 | Bollen P, Quievy N, Detrembleur C, et al. Processing of a new class of multifunctional hybrid for electromagnetic absorption based on a foam filled honeycomb [J]. Materials & Design, 2016, 89: 323⁃334. |
50 | Won⁃Ho Choi, Kim Chun⁃Gon. Broadband microwave⁃absorbing honeycomb structure with novel design concept [J]. Composites Part B: Engineering, 2015, 83: 14⁃20. |
51 | Huang Yixing, Dong Wu, Chen Mingji, et al. Evolutionary optimization design of honeycomb metastructure with effective mechanical resistance and broadband microwave absorption [J]. Carbon, 2021, 177: 79⁃89. |
52 | Byeong⁃Su Kwak, Gi⁃Won Jeong, Won⁃Ho Choi, et al. Microwave⁃absorbing honeycomb core structure with nickel⁃coated glass fabric prepared by electroless plating [J]. Composite Structures, 2021, 256: 1⁃9. |
53 | Won⁃Ho Choi, Byeong⁃Su Kwak, Jin⁃Hwe Kweon, et al. Radar⁃absorbing foam⁃based sandwich composite with electroless nickel⁃plated glass fabric [J]. Composite Structures, 2020, 243: 1⁃7. |
54 | Choi W H, Jang H K, Shin J H, et al. Wideband radar absorbing structure with low density material and load‐bearing MWCNT added composite material [J]. Electronics Letters, 2013, 49(9): 620⁃622. |
55 | Wang Changxian, Chen Mingji, Lei Hongshuai, et al. Frequency⁃selective⁃surface based sandwich structure for both effective loadbearing and customizable microwave absorption [J]. Composite Structures, 2020, 235: 1⁃8. |
56 | Wei Jiang, Hua Ma, Yan Leilei, et al. A microwave absorption/transmission integrated sandwich structure based on composite corrugation channel: Design, fabrication and experiment [J]. Composite Structures, 2019, 229: 1⁃9. |
57 | Huang Haoming, Wen Wang, Cao Taishan, et al. Broadband radar absorbing performance of corrugated structure [J]. Composite Structures, 2020, 253: 1⁃7. |
58 | Zheng Qing, Fan Hualin, Liu Jun, et al. Hierarchical lattice composites for electromagnetic and mechanical energy absorptions [J]. Composites Part B: Engineering, 2013, 53: 152⁃158. |
59 | Huang Yixing, Yuan Xujin, Chen Mingji, et al. Ultrathin multifunctional carbon/glass fiber reinforced lossy lattice metastructure for integrated design of broadband microwave absorption and effective load bearing [J]. Carbon, 2019, 144: 449⁃456. |
60 | Jaeho Choi, Jung Hee⁃Tae. A new triple⁃layered composite for high⁃performance broadband microwave absorption [J]. Composite Structures, 2015, 122: 166⁃171. |
61 | Rojas J A, Ribeiro B, Rezende M C. Influence of serrated edge and rectangular strips of MWCNT buckypaper on the electromagnetic properties of glass fiber/epoxy resin composites [J]. Carbon, 2020, 160: 317⁃327. |
62 | Wang Xi⁃Xi, Sun Chao⁃Ming, Wen Fu⁃Bao, et al. Strong mechanics and broadened microwave absorption of graphene⁃based sandwich structures and surface⁃patterned structures [J]. Journal of Materials Science: Materials in Electronics, 2018, 29(11): 9 683⁃9 696. |
63 | Zeng Qu, Hao Jingxian, Jing Huihui, et al. An ultra⁃thin ultra⁃broadband microwave absorber for radar stealth [J]. Advanced Composites and Hybrid Materials, 2022,5(3):1 778⁃1 785. |
64 | Yi Liu, Jian Yang, Xu Jie, et al. Electromagnetic and microwave absorption properties of Ti3SiC2/AgNWs/ acrylic acid resin composite coatings with FSS incorporation [J]. Journal of Alloys and Compounds, 2022, 14(233): 1⁃12. |
65 | Won⁃Ho Choi, Byeong⁃Su Kwak, Jin⁃Hwe Kweon, et al. Microwave absorbing structure using periodic pattern coated fabric [J]. Composite Structures, 2020, 238(111953): 1⁃6. |
66 | Wang Changxian, Lei Hongshuai, Huang Yixing, et al. Effects of stitch on mechanical and microwave absorption properties of radar absorbing structure [J]. Composite Structures, 2018, 195: 297⁃307. |
67 | Neeraj Gill, Smitha Puthucheri, Dharmendra Singh, et al. Critical analysis of frequency selective surfaces embedded composite microwave absorber for frequency range 2–8 GHz [J]. Journal of Materials Science: Materials in Electronics, 2016, 28(2): 1 259⁃1 270. |
68 | Ye F, Song C, Zhou Q, et al. Broadband microwave absorbing composites with a multi⁃scale layered structure based on reduced graphene oxide film as the frequency selective surface[J]. Materials, 2018, 11(9): 1 771. |
69 | Wang Changxian, Chen Mingji, Lei Hongshuai, et al. Radar stealth and mechanical properties of a broadband radar absorbing structure [J]. Composites Part B: Engineering, 2017, 123: 19⁃27. |
70 | Li Weiwei, Chen Mingji, Zeng Zhihui, et al. Broadband composite radar absorbing structures with resistive frequency selective surface: Optimal design, manufacturing and characterization [J]. Composites Science and Technology, 2017, 145: 10⁃4. |
71 | Silveira Daniel C, A S Gomes Newton, Rezende Mirabel C,et al. Microwave absorbing properties of glass fiber/epoxy resin composites tailored with frequency selective surface based on nonwoven of carbon fibers metalized with nickel [J]. Journal of Materials Science: Materials in Electronics, 2020, 31(16): 13 095⁃13 103. |
72 | Chen Xiqiao, Zhuang Wu, Zhang Zilong, et al. Ultra⁃broadband and wide⁃angle absorption based on 3D⁃printed pyramid [J]. Optics & Laser Technology, 2020, 124: 105972. |
73 | Ting Liu, Xu Yonggang, Zheng Dianliang, et al. Fabrication and absorbing property of the tower⁃like absorber based on 3D printing process [J]. Physica B: Condensed Matter, 2019, 553: 88⁃95. |
74 | 黄 科, 冯 斌, 邓京兰. 结构型吸波复合材料研究进展 [J]. 高科技纤维与应用, 2010, 35(6): 54⁃58. |
HUANG K, FENG B, DENG J L. Research progress of structural radar⁃absorbing composite materials [J]. Hi⁃Tech Fiber & Application, 2010, 35(6): 54⁃58. | |
75 | 张 磊, 李永清, 王静南, 等. 雷达隐身复合材料研究进展及在舰船上的应用 [J]. 船舰科学技术, 2020, 42(2): 144⁃149. |
ZHANG L, LI Y Q, WANG J N, et. al . The research and application of radar wave stealth composites for warship[J]. Ship Science and Technology, 2020, 42(2): 144⁃149. |
[1] | JIA Mingyin, DONG Xianwen, WANG Jiaming, CHEN Ke. Effect of impregnation method on vacuum bag press molding process and properties of polyamide 6 composites [J]. China Plastics, 2022, 36(9): 1-6. |
[2] | ZHANG Lin, XIA Zhangchuan, HE Yadong, XIN Chunling, WANG Ruixue, REN Feng. Influence of gas flow of plasma jet carrier on modification effect for glass fiber [J]. China Plastics, 2022, 36(9): 7-15. |
[3] | GAO Yonghong, PENG Mengmi, JIN Qingping. Temperature effect on bond performance between glass fiber reinforcement polymer bars and concrete [J]. China Plastics, 2022, 36(9): 16-23. |
[4] | DONG Yue, DONG Xiao, ZHU Dezhao, YANG Yanxiang, LUO Chen, LI Yang, LI Jinshan. An overview of development and application prospects of polyimide products [J]. China Plastics, 2022, 36(9): 85-95. |
[5] | LI Zhuolin, MU Wenying, DING Yumei. Research status and development trend of medical radiation protective clothing [J]. China Plastics, 2022, 36(9): 193-201. |
[6] | JIAO Zhiwei, WANG Kechen, ZHANG Yang, YANG Weimin. Performance of PVC/ABS composites filled with carbon black and talc powders based on carbon nano coating deposition [J]. China Plastics, 2022, 36(8): 10-15. |
[7] | HU Chenguang, SU Hang, FENG Xiaoxin, DING Feng, LI Enshuo, FU Jiawei. Preparation and properties of waste glass⁃fiber⁃reinforced plastic⁃modified asphalt [J]. China Plastics, 2022, 36(8): 119-126. |
[8] | YU Darong, XIN Yong. Research progress in modification of ultrahigh molecular weight polyethylene [J]. China Plastics, 2022, 36(8): 135-145. |
[9] | YU Jiuyang, WANG Zhonghao, CHEN Qi, XIA Yazhong. Study on properties of advanced resin matrix composites for valve body manufacturing [J]. China Plastics, 2022, 36(8): 16-22. |
[10] | ZHANG Taozhong, CHEN Xiaolong, HAO Xiaoyu, YU Fujia. Comparison of mechanical properties and interfacial interactions of polypropylene composites filled with talc, calcium carbonate, and barium sulfate [J]. China Plastics, 2022, 36(8): 36-41. |
[11] | CHEN Baiquan, ZHENG Youming, TIAN Jibo, XHANG Lei, WANG Jinsong, LIN Xiajie, DUAN Yapeng. Preparation and properties of polyamide flame⁃retardant composite reinforced with high content of glass fiber [J]. China Plastics, 2022, 36(8): 42-48. |
[12] | DU Qing, HE Yi, YU Tanjing, LAN Yanjiao, ZHAO Yanzhi, ZHOU Juying. Preparation and characterization of oriented thermoplastic polyolefin/PAN/ MWCNT composites [J]. China Plastics, 2022, 36(8): 49-55. |
[13] | QU Yuting, WANG Limei, QI Bin. Effect of poly(ethylene glycol) on properties of poly(lactic acid)/starch nanocrystal composites [J]. China Plastics, 2022, 36(8): 56-61. |
[14] | FENG Bingtao, WANG Xiaoke, ZHANG Xin, SUN Guohua, WANG Dianlong, HOU Lianlong, MA Jinsong. Preparation and application of continuous carbon⁃fiber⁃reinforced thermoplastic composites [J]. China Plastics, 2022, 36(7): 165-173. |
[15] | SONG Yinbao, YANG Jianjun, LI Chuanmin. Study on properties and manufacturing precision of PDMS/SiC functionally gradient composites [J]. China Plastics, 2022, 36(7): 30-36. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||