京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2023, Vol. 37 ›› Issue (10): 101-110.DOI: 10.19491/j.issn.1001-9278.2023.10.014
• Functional modification of polymers and their extreme service applications • Previous Articles Next Articles
WANG Xiaonan1, FU Jingao1, CHEN Sisi1, GAO Hainan1(), CAI Yudong2(
)
Received:
2023-04-04
Online:
2023-10-26
Published:
2023-10-23
CLC Number:
WANG Xiaonan, FU Jingao, CHEN Sisi, GAO Hainan, CAI Yudong. Research progress in hydrogel for oilfield development[J]. China Plastics, 2023, 37(10): 101-110.
应用 | 原理 | 类型 | 举例 |
---|---|---|---|
水凝胶基 油水分离过滤 | 水凝胶中亲水网络能够通过氢键与水分子形成稳定结合,表面的水合层具有优异的水下超疏油性质。(1)修饰于滤网表面可以选择性地使得亲水性液体流过,同时阻止油滴下落,起到油水分离的作用。(2)表面的超亲水疏油性能也使得高黏度的原油、渣油以及重油等无法黏附于其表面,制成优异的抗油污黏附表面。 | 天然高分子基水凝胶、合成聚合物基水凝胶,合成/天然聚合物基复合水凝胶 | D8S2广盐性水凝胶(Gao[ 纤维素水凝胶涂层网(Ao[ 两性离子聚氨酯水凝胶(Wang[ 海水增强的琼脂/聚(N⁃异丙基丙烯酰胺)/黏土水凝胶(Zhu[ |
聚合物水凝胶 用于剖面控制 与断水 | 钻井液中的水分不可避免地通过井壁滤失到地层中,造成失水。为阻止钻井液的进一步滤失,水凝胶微球黏附于井壁黏土,同时通过溶胀实现堵漏、堵水以及降滤失作用,提高钻井液的利用效率。 | 单体/聚合物、交联剂同时注入地层的原位成型单体/聚合物凝胶、凝胶在注射前完全成型的预成型凝胶、添加纳米颗粒形成颗粒增强聚合物凝胶、加入一些刺激响应基团形成聚合物凝胶 | 黏土发泡凝胶(Bai[ 水凝胶杂化微球(Li[ 羟基和羧基成分混合的聚合物丙烯酰胺溶液(Fan[ 纳米二氧化硅改性共聚物凝胶(Li[ 酸碱敏感延迟膨胀凝胶失去循环控制剂(Cui[ |
水凝胶作 驱油剂 | 驱油剂是在石油钻探开采时提高原油的采收率使用的一种助剂,实际操作时常是聚合物溶液和表面活性剂分段驱油,其可驱替岩层毛细管中的原油。由于水凝胶具有优异的亲水疏油界面,与低极性的油体无法互溶,因而注入后将对分散的油体产生较强斥力,驱使油体聚集,提高采油效率。 | 主要有三采驱油剂、界面张力驱油剂、三元共聚物驱油剂 | 凝胶泡沫体系的复合封堵系统(Wang[ 耐温抗盐预交联凝胶颗粒(杨姗[ 驱油剂SDQ⁃1(ZHAO[ 力化学改性木粉凝胶(孙焕泉[ |
应用 | 原理 | 类型 | 举例 |
---|---|---|---|
水凝胶基 油水分离过滤 | 水凝胶中亲水网络能够通过氢键与水分子形成稳定结合,表面的水合层具有优异的水下超疏油性质。(1)修饰于滤网表面可以选择性地使得亲水性液体流过,同时阻止油滴下落,起到油水分离的作用。(2)表面的超亲水疏油性能也使得高黏度的原油、渣油以及重油等无法黏附于其表面,制成优异的抗油污黏附表面。 | 天然高分子基水凝胶、合成聚合物基水凝胶,合成/天然聚合物基复合水凝胶 | D8S2广盐性水凝胶(Gao[ 纤维素水凝胶涂层网(Ao[ 两性离子聚氨酯水凝胶(Wang[ 海水增强的琼脂/聚(N⁃异丙基丙烯酰胺)/黏土水凝胶(Zhu[ |
聚合物水凝胶 用于剖面控制 与断水 | 钻井液中的水分不可避免地通过井壁滤失到地层中,造成失水。为阻止钻井液的进一步滤失,水凝胶微球黏附于井壁黏土,同时通过溶胀实现堵漏、堵水以及降滤失作用,提高钻井液的利用效率。 | 单体/聚合物、交联剂同时注入地层的原位成型单体/聚合物凝胶、凝胶在注射前完全成型的预成型凝胶、添加纳米颗粒形成颗粒增强聚合物凝胶、加入一些刺激响应基团形成聚合物凝胶 | 黏土发泡凝胶(Bai[ 水凝胶杂化微球(Li[ 羟基和羧基成分混合的聚合物丙烯酰胺溶液(Fan[ 纳米二氧化硅改性共聚物凝胶(Li[ 酸碱敏感延迟膨胀凝胶失去循环控制剂(Cui[ |
水凝胶作 驱油剂 | 驱油剂是在石油钻探开采时提高原油的采收率使用的一种助剂,实际操作时常是聚合物溶液和表面活性剂分段驱油,其可驱替岩层毛细管中的原油。由于水凝胶具有优异的亲水疏油界面,与低极性的油体无法互溶,因而注入后将对分散的油体产生较强斥力,驱使油体聚集,提高采油效率。 | 主要有三采驱油剂、界面张力驱油剂、三元共聚物驱油剂 | 凝胶泡沫体系的复合封堵系统(Wang[ 耐温抗盐预交联凝胶颗粒(杨姗[ 驱油剂SDQ⁃1(ZHAO[ 力化学改性木粉凝胶(孙焕泉[ |
1 | 曹绪龙. 大分子交联剂制备颗粒驱油剂及其性能[J]. 油田化学, 2020, 37(4): 683⁃690. |
CAO X L. Preparation and properties of particle oil displacement agents using macromolecular crosslinking agents[J]. Oilfield Chemistry, 2020, 37(4): 683⁃690. | |
2 | Wang R, Yang J, Liu L, et al. Investigation on filtration control of zwitterionic polymer AADN in high temperature high pressure water⁃based drilling fluids[J]. Gels, 2022, 8(12): 826. |
3 | Dizayee K K, Judd S J. A brief review of the status of low⁃pressure membrane technology implementation for petroleum industry effluent treatment[J]. Membranes, 2022, 12(4): 391. |
4 | 赵宝宝, 丁海燕, 李 运,等. 水凝胶吸附材料处理废水的研究进展[J]. 皮革与化工, 2020, 37(6): 26⁃31. |
ZHAO B B, DING H Y, LI Y, et al. Research progress in wastewater treatment with hydrogel adsorbents[J]. Leather And Chemicals, 2020, 37(6): 26⁃31. | |
5 | Zareie C, Sefti M V, Bahramian A R, et al. A polyacrylamide hydrogel for application at high temperature and sali⁃nity tolerance in temporary well plugging[J]. Iranian Polymer Journal, 2018, 27(8): 577⁃587. |
6 | 崔 航, 王思琪, 郭世好,等. 水凝胶的制备及应用进展[J]. 化工新型材料, 2021, 49(S1): 47⁃51. |
CUI H, WANG S Q, Guo S H, et al. Progress in preparation and application of hydrogel[J]. New Chemical Material, 2021, 49(S1): 47⁃51. | |
7 | Amakiri K T, Canon A R, Molinari M, et al. Review of oilfield produced water treatment technologies[J]. Chemosphere, 2022, 298: 134064. |
8 | Jabri F A, Muruganandam L, Aljuboury D. Treatment of the oilfield⁃produced water and oil refinery wastewater by using inverse fluidization⁃a review[J]. Global Nest Journal, 2019, 21(2): 204⁃210. |
9 | Gbadamosi A, Patil S, Kamal M S, et al. Application of polymers for chemical enhanced oil recovery: a review[J]. Polymers, 2022, 14(7): 1433. |
10 | Awasthi S, Gaur J K, Bobji M S, et al. Nanoparticle⁃reinforced polyacrylamide hydrogel composites for clinical applications: a review[J].Journal of Materials Science, 2022, 57(17): 8 041⁃8 063. |
11 | De Aguiar K, De Oliveira P F, Mansur C R E. A comprehensive review of in situ polymer hydrogels for conformance control of oil reservoirs[J]. Oil & Gas Science and Technology, 2020, 75(1): 8. |
12 | Gbadamosi A O, Junin R, Manan M A, et al. Hybrid suspension of polymer and nanoparticles for enhanced oil recovery[J]. Polymer Bulletin, 2019, 76(12): 6 193⁃6 230. |
13 | Zheng L, Sundaram H S, Wei Z, et al. Applications of zwitterionic polymers[J]. Reactive and Functional Polymers, 2017, 118(q): 51⁃61. |
14 | Zheng S Y, Mao S H, Yuan J F, et al. Molecularly engineered zwitterionic hydrogels with high toughness and self⁃healing capacity for soft electronics applications[J]. Che⁃mistry of Materials, 2021, 33(21): 8 418⁃8 429. |
15 | Li P, Zeng L P, Guo H L, et al. Research progress in zwitterionic hydrogels[J]. Acta Polymerica Sinica, 2020, 51(12): 1 307⁃1 320. |
16 | Li X H, Tang C J, Liu D, et al. High⁃strength and nonfouling zwitterionic triple⁃network hydrogel in saline environments[J]. Advanced Materials, 2021, 33(39): e2102479. |
17 | Saha P, Ganguly R, Li X, et al. Zwitterionic nanogels and microgels: an overview on their synthesis and applications[J]. Macromolecular Rapid Communications, 2021, 42(13): e2100112. |
18 | Gao H N, Mao J L, Cai Y D, et al. Euryhaline hydrogel with constant swelling and salinity⁃enhanced mechanical strength in a wide salinity range[J]. Advanced Functional Materials, 2021, 31(4): 1⁃8. |
19 | Huang K T, Ishihara K, Huang C J. Polyelectrolyte and antipolyelectrolyte effects for dual salt⁃responsive interpenetrating network hydrogels[J]. Biomacromolecules, 2019, 20(9): 3 524⁃3 534. |
20 | Zhu Y Z, Wang J L, Zhang F, et al. Zwitterionic nanohydrogel grafted PVDF membranes with comprehensive antifouling property and superior cycle stability for oil⁃in⁃water emulsion separation[J]. Advanced Functional Materials, 2018, 28(40): 1804121. |
21 | Su X, Hao D Z, Xu X Q, et al. Hydrophilic/hydrophobic heterogeneity anti⁃biofouling hydrogels with well⁃regulated rehydration[J]. ACS Applied Materials & Interfaces, 2020, 12(22): 25 316⁃25 323. |
22 | Li Y Q, Zhang H, Ma C, et al. Durable, cost⁃effective and superhydrophilic chitosan-alginate hydrogel⁃coated mesh for efficient oil/water separation[J]. Carbohydrate Polymers, 2019, 226: 115279. |
23 | Cai Y, Lu Q, Guo X, et al. Salt⁃tolerant superoleophobicity on alginate gel surfaces inspired by seaweed (saccharina japonica)[J]. Advanced Materials, 2015, 27(28): 4 162⁃4 168. |
24 | Wang A Q, Zhu Y Z, Jin J. Preparation of carboxyl⁃betaine polyurethane hydrogel and study on its underwater anti⁃crude⁃oil⁃adhesion property[J]. Chemical Journal of Chinese Universities, 2021, 42(4): 1 246⁃1 252. |
25 | Bai Z, Jia K, Liu C, et al. A solvent regulated hydrogen bond crosslinking strategy to prepare robust hydrogel paint for oil/water separation[J]. Advanced Functional Materials, 2021, 31(49): 1⁃12. |
26 | Lv Y, Xi X, Dai L, et al. Hydrogel as a superwetting surface design material for oil/water separation: a review[J].Advanced Materials Interfaces, 2021, 8(7): 2002030. |
27 | Ao C, Hu R, Zhao J, et al. Reusable, salt⁃tolerant and superhydrophilic cellulose hydrogel⁃coated mesh for efficient gravity⁃driven oil/water separation[J]. Chemical Engineering Journal, 2018, 338: 271⁃277. |
28 | Cao W, Xie K, Wang X, et al. Starch graft copolymer and polymer gel applied in Bohai oilfield for water plugging and profile control and their mechanisms[J]. Geosystem Engineering, 2020, 23(4): 197⁃204. |
29 | Kang W L, Kang X, Lashari Z A, et al. Progress of polymer gels for conformance control in oilfield[J]. Advances in Colloid and Interface Science, 2021, 289: 102363. |
30 | 易雄健, 郭继香, 杨矞琦. 耐高温油田堵水剂的研究进展[J]. 应用化工, 2020, 49(04): 945⁃957. |
YI X J, GUO J X, YANG Y Q. Research progress of high temperature resistant water plugging agents[J]. Applied Chemical Industry, 2020, 49(4): 945⁃957. | |
31 | Bai Y, Lian Y, Zhao J, et al. Thermal-insulation and temperature⁃resistant foamed gel for thermal management of heavy oil steam flooding[J]. Journal of Molecular Li⁃quids, 2022, 359: 119304. |
32 | Zisis V, Kelessidis V C. Nano⁃based drilling fluids: a review[J]. Energies, 2017, 10(4): 540. |
33 | Li Z, Zhao T, Lv W, et al. Nanoscale polyacrylamide copolymer/silica hydrogel microspheres with high compre⁃ssive strength and satisfactory dispersion stability for efficient profile control and plugging[J].Industrial & Engineering Chemistry Research, 2021, 60(28): 10 193⁃10 202. |
34 | Luo M, Si X, Li M, et al. Experimental study on the temporary plugging performance of magnetic responsive hydrogel in hydraulic fracturing of hydrocarbon reservoirs[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 646: 128981. |
35 | 王 安. 纤维素纳米纤丝的改性及其增强堵漏水凝胶的应用[D]. 天津: 天津科技大学, 2021. |
36 | Hamza A, Shamlooh M, Hussein I A, et al. Polymeric formulations used for loss circulation materials and wellbore strengthening applications in oil and gas wells: a review[J]. Journal of Petroleum Science and Engineering, 2019, 180: 197⁃214. |
37 | Zhong H, Shen G, Yang P, et al. Mitigation of lost circulation in oil-based drilling fluids using oil absorbent polymers[J]. Materials, 2018, 11(10): 2020. |
38 | He H, Wang Y, Zhang J, et al. Comparison of gelation behavior and morphology of resorcinol⁃hexamethylenetetramine⁃HPAM gel in bulk and porous media[J]. Transp Porous Media, 2015, 109(2): 377⁃392. |
39 | Fan X, Zhao P, Zhang Q, et al. A polymer plugging gel for the fractured strata and its application[J]. Materials, 2018, 11(5): 856. |
40 | Wang L L, Wang T F, Wang J X, et al. Enhanced oil recovery mechanism and technical boundary of gel foam profile control system for heterogeneous reservoirs in changging[J]. Gels, 2022, 8(6): 371. |
41 | 赵 清, 郭继香, 焦保雷,等. 耐高温高盐弱凝胶驱油剂的开发及性能评价[J]. 现代化工, 2020, 40(12): 137⁃146. |
ZHAO Q, GUO J X, JIAO B L, et al. Development and performance evaluation of weak gel displacement agent with high temperature resistance and high salt resistance[J]. Modern Chemical Industry, 2020, 40(12): 137⁃146. | |
42 | 孙焕泉, 曹绪龙, 姜祖明,等. 力化学改性木粉纤维制备水凝胶颗粒驱油剂[J]. 油田化学, 2021, 38(3): 476⁃481. |
SUN H Q, CAO X L, JIANG Z M, et al. Preparation of hydrogel particle oil displacement agent from mechanochemically modified wood flour fiber[J]. Oilfield Chemistry, 2021, 38(3): 476⁃481. | |
43 | Yang J b, Sun J s, Bai Y⁃r, et al. Review of the application of environmentally responsive gels in drilling and oil recovery engineering: Synthetic materials, mechanism, and application prospect[J]. Journal of Petroleum Science and Engineering, 2022, 215(PA): 12⁃19. |
44 | 江文鹏, 张 鑫, 陈 欢,等. 改性温度/pH敏感性水凝胶的制备及其研究进展[J]. 山东化工, 2022, 51(16): 130⁃132. |
JIANG W P, ZHANG X, CHEN H,et al. Preparation and research progress of modified temperature/p H sensitive hydrogels[J]. Shandong Chemical Industry, 2022, 51(16): 130⁃132. | |
45 | Li T, Shen J, Zhang Z, et al. A poly(2⁃(dimethylamino)ethyl methacrylate⁃co⁃methacrylic acid) complex induced route to fabricate a super⁃hydrophilic hydrogel and its controllable oil/water separation[J]. RSC Advances, 2016, 6(47): 40 656⁃40 663. |
46 | Zhu Y, Lin L, Zeng J, et al. Seawater⁃enhanced tough agar/poly(N⁃isopropylacrylamide)/clay hydrogel for anti⁃adhesion and oil/water separation[J]. Soft Matter, 2020, 16(9): 2 199⁃2 207. |
47 | Li J, Sun J, Lv K, et al. Nano⁃modified polymer gels as temperature⁃ and salt⁃resistant fluid⁃loss additive for water⁃based drilling fluids[J]. Gels, 2022, 8(9): 547. |
48 | Cui K X, Jiang G C, Yang L L, et al. Preparation and properties of magnesium oxysulfate cement and its application as lost circulation materials[J]. Petroleum Science, 2021, 18(5): 1 492⁃1 506. |
49 | 杨 姗, 齐书磊, 李慎伟,等. 耐温抗盐预交联凝胶颗粒驱油剂的合成及应用评价[J]. 胶体与聚合物, 2020, 38(4): 182⁃185. |
YANG S, QI S L, LI S W, et al. Synthesis and application evaluation of temperature resistant and salt resistant pre crosslinked gel particle oil displacement agent[J]. Chinese Journal of Colloid&Polymer, 2020, 38(4): 182⁃185. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||