京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2024, Vol. 38 ›› Issue (11): 124-129.DOI: 10.19491/j.issn.1001-9278.2024.11.021
• Review • Previous Articles
Received:
2024-02-23
Online:
2024-11-26
Published:
2024-11-21
CLC Number:
WANG Xiang. Research progress in preparation of graphene by supercritical CO2 exfoliation[J]. China Plastics, 2024, 38(11): 124-129.
序号 | 机械方式 | 石墨烯产率及质量 | 参考文献 |
---|---|---|---|
1 | 搅拌 | 10层以下产率约30 %~40 % | [ |
2 | 搅拌、多次剥离 | 第一次:47%为6~8层 第二次:35%为3~5层,8%为1~2层 | [ |
3 | 搅拌、高压45 MPa | 75 %约为3~6层,90 %的横向尺寸小于1.4 μm | [ |
4 | 超声 | 使用300 W和120 W的超声功率分别获得了横向尺寸为50~100 nm的单层石墨烯和横向尺寸为0.5~1 μ m的双层石墨烯 | [ |
5 | 超声 | 24 %为单层、44 %为双层和26 %为3层的石墨烯 | [ |
6 | 超声 | 剥离率为82.6 %,1~2层的约占60 % | [ |
7 | 超声 | 超声功率从12 W增加到240 W,产率从5.2 %增加到21.5 % | [ |
8 | 超声 | 100 %的产率 | [ |
9 | 球磨 | 3~5层 | [ |
10 | 球磨 | 72 %小于5层,≈98 %少于10层 | [ |
11 | 先球磨再高剪切混合器 | 90 %小于5层,其中单层和双层分别占7.73 %和24.86 % | [ |
12 | 流体剪切 | 1~10层达到 90 % 以上 | [ |
13 | 高剪切混合器和多次剥离 | 7 次剥离反应后剥离率为63.2 %,5 层以下79 %,单层 27 %,双层 25 %,3层 14 % | [ |
14 | 微射流装置 | 3层以下88 % | [ |
15 | 微射流装置 | 少于5层68 %,75 %的横向尺寸在1~4 μm | [ |
16 | 微射流装置 | 3层以下95 %,2层65 % | [ |
17 | 微射流装置 | 少于5层88.6 %,36.6 %横向尺寸大于1 μm | [ |
序号 | 机械方式 | 石墨烯产率及质量 | 参考文献 |
---|---|---|---|
1 | 搅拌 | 10层以下产率约30 %~40 % | [ |
2 | 搅拌、多次剥离 | 第一次:47%为6~8层 第二次:35%为3~5层,8%为1~2层 | [ |
3 | 搅拌、高压45 MPa | 75 %约为3~6层,90 %的横向尺寸小于1.4 μm | [ |
4 | 超声 | 使用300 W和120 W的超声功率分别获得了横向尺寸为50~100 nm的单层石墨烯和横向尺寸为0.5~1 μ m的双层石墨烯 | [ |
5 | 超声 | 24 %为单层、44 %为双层和26 %为3层的石墨烯 | [ |
6 | 超声 | 剥离率为82.6 %,1~2层的约占60 % | [ |
7 | 超声 | 超声功率从12 W增加到240 W,产率从5.2 %增加到21.5 % | [ |
8 | 超声 | 100 %的产率 | [ |
9 | 球磨 | 3~5层 | [ |
10 | 球磨 | 72 %小于5层,≈98 %少于10层 | [ |
11 | 先球磨再高剪切混合器 | 90 %小于5层,其中单层和双层分别占7.73 %和24.86 % | [ |
12 | 流体剪切 | 1~10层达到 90 % 以上 | [ |
13 | 高剪切混合器和多次剥离 | 7 次剥离反应后剥离率为63.2 %,5 层以下79 %,单层 27 %,双层 25 %,3层 14 % | [ |
14 | 微射流装置 | 3层以下88 % | [ |
15 | 微射流装置 | 少于5层68 %,75 %的横向尺寸在1~4 μm | [ |
16 | 微射流装置 | 3层以下95 %,2层65 % | [ |
17 | 微射流装置 | 少于5层88.6 %,36.6 %横向尺寸大于1 μm | [ |
序号 | 溶剂/表面活性剂等 | 石墨烯产率及质量 | 工艺 | 参考文献 |
---|---|---|---|---|
1 | NMP | 5~8层,最大生产率为1.44 g/h | 高剪切混合器 | [ |
2 | NMP | 石墨烯产品分布在2~3 层,单层石墨烯比例可以达到 12 %~38 % | 低温(30~60 ℃) 1 000 r/min带玻璃珠搅拌 | [ |
3 | NMP | 68 %的产物厚度小于2.5 nm,横向尺寸为0.5~3.0 μm | 20 MPa下通过三叶片型螺旋桨以1 000 r/min搅拌3 h。空化和喷射的作用下再次剥离,混合物冲出喷嘴,强烈冲击目标网格 | [ |
4 | NMP | 0.653 mg/mL,1~3层约为56.4 % | 叶轮和尾水管组合结构 | [ |
5 | 水、乙醇 | 石墨烯产率超过50 %,93 %的石墨烯为 3 层以下,悬浮液浓度大于2.5 g/L | 超声 | [ |
6 | 水、SDBS | 1~3层和4~6层的产率分别为40 %和36 %,80 %的石墨烯片不到6层。当转速4 000 r/min时,十字转子和六齿转子产生的石墨烯产率分别34.01 %和33.3 % | 高剪切混合器 | [ |
7 | 水、PVP | 5层以下石墨烯比例达到 70 % | 搅拌式球磨设备 | [ |
8 | 水、PVP | 产率70.25 %,而80 %的石墨烯片为单层或寡层,尺寸约为微米 | 交替的微流体化过程(液相,LP)和超临界CO2过程(气相,GP),即LP⁃GP⁃LP过程 | [ |
9 | 水、乙醇、PVP | 石墨烯纳米片层数在3层以下的比例超过 87.7 %,并且单层和双层石墨烯占72.2 % | 搅拌 | [ |
10 | 1⁃乙基⁃3⁃甲基咪唑鎓双(三氟甲基磺酰基)酰亚胺 | 3.5~5.5 nm的石墨烯约为70 %,横向尺寸约为700~1 100 nm的占70 % | 射流冲击 | [ |
11 | DMF、芘衍生物 | 1~3层石墨烯82 %,单层石墨烯6 % | 搅拌 | [ |
12 | DMSO、芘聚合物 | 石墨烯溶液主要由单层、双层或3层和多层(5层)石墨烯片组成,石墨烯片在水中的产率10.2 %,在DMSO中的产率51.8 % | 搅拌 | [ |
13 | 2,2,2⁃PTFEMA⁃b⁃PVP | 产生了具有5层或5层以上的少层石墨烯 | 搅拌 | [ |
序号 | 溶剂/表面活性剂等 | 石墨烯产率及质量 | 工艺 | 参考文献 |
---|---|---|---|---|
1 | NMP | 5~8层,最大生产率为1.44 g/h | 高剪切混合器 | [ |
2 | NMP | 石墨烯产品分布在2~3 层,单层石墨烯比例可以达到 12 %~38 % | 低温(30~60 ℃) 1 000 r/min带玻璃珠搅拌 | [ |
3 | NMP | 68 %的产物厚度小于2.5 nm,横向尺寸为0.5~3.0 μm | 20 MPa下通过三叶片型螺旋桨以1 000 r/min搅拌3 h。空化和喷射的作用下再次剥离,混合物冲出喷嘴,强烈冲击目标网格 | [ |
4 | NMP | 0.653 mg/mL,1~3层约为56.4 % | 叶轮和尾水管组合结构 | [ |
5 | 水、乙醇 | 石墨烯产率超过50 %,93 %的石墨烯为 3 层以下,悬浮液浓度大于2.5 g/L | 超声 | [ |
6 | 水、SDBS | 1~3层和4~6层的产率分别为40 %和36 %,80 %的石墨烯片不到6层。当转速4 000 r/min时,十字转子和六齿转子产生的石墨烯产率分别34.01 %和33.3 % | 高剪切混合器 | [ |
7 | 水、PVP | 5层以下石墨烯比例达到 70 % | 搅拌式球磨设备 | [ |
8 | 水、PVP | 产率70.25 %,而80 %的石墨烯片为单层或寡层,尺寸约为微米 | 交替的微流体化过程(液相,LP)和超临界CO2过程(气相,GP),即LP⁃GP⁃LP过程 | [ |
9 | 水、乙醇、PVP | 石墨烯纳米片层数在3层以下的比例超过 87.7 %,并且单层和双层石墨烯占72.2 % | 搅拌 | [ |
10 | 1⁃乙基⁃3⁃甲基咪唑鎓双(三氟甲基磺酰基)酰亚胺 | 3.5~5.5 nm的石墨烯约为70 %,横向尺寸约为700~1 100 nm的占70 % | 射流冲击 | [ |
11 | DMF、芘衍生物 | 1~3层石墨烯82 %,单层石墨烯6 % | 搅拌 | [ |
12 | DMSO、芘聚合物 | 石墨烯溶液主要由单层、双层或3层和多层(5层)石墨烯片组成,石墨烯片在水中的产率10.2 %,在DMSO中的产率51.8 % | 搅拌 | [ |
13 | 2,2,2⁃PTFEMA⁃b⁃PVP | 产生了具有5层或5层以上的少层石墨烯 | 搅拌 | [ |
1 | Hummers J W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6): 1339. |
2 | Blake P, Brimicombe P D, Nair R R, et al. Graphene⁃based liquid crystal device[J]. Nano Letters, 2008,8:1 704⁃1 708. |
3 | Novoselov K S, Geima K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306: 666⁃669. |
4 | Wang Y, Chen Z, Wu Z, et al. High⁃effiffifficiency production of graphene by supercritical CO2 exfoliation with rapid expansion[J]. Langmuir, 2018, 34(26): 7 797⁃7 804. |
5 | Pu N W, Wang C A, Sung Y, et al. Production of few⁃layer graphene by supercritical CO2 exfoliation of graphite[J]. Materials Letters, 2009, 63:1 987⁃1 989 |
6 | Wang W, Wang Y, Gao Y, et al. Control of number of graphene layers using ultrasound in supercritical CO2 and their application in lithium⁃ion batteries[J]. The Journal of Supercritical Fluids,2014, 85: 95⁃101. |
7 | Gao Y H, Shi W, Wang W C,et al. Ultrasonic⁃assisted production of graphene with high yield in supercritical CO2 and its high electrical conductivity film[J].Industrial & Engineering Chemistry Research, 2014, 53: 2 839⁃2 845. |
8 | Wang W, Gai Y, Song N, et al. Highly efficient production of graphene by an ultrasound coupled with a shear mixer in supercritical CO2 [J]. Industrial & Engineering Chemistry Research, 2018, 57(49): 16 701⁃16 708. |
9 | Jeon I Y, Shin Y R, Sohn G J, et al. Edge⁃carboxylated graphene nanosheets via ball milling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012,109(15):5 588–5 593. |
10 | Navik R, Tan H J, Liu Z Y, et al. Scalable production of high⁃quality exfoliated graphene using mechanical milling in conjugation with supercritical CO2 [J].Flat Chem, 2022,33: 100374. |
11 | Tan H J, Navik R, Liu Z Y, et al. Scalable massive production of defect⁃free few⁃layer graphene by ball⁃milling in series with shearing exfoliation in supercritical CO2 [J].The Journal of Supercritical Fluids, 2022,181: 105 496⁃105 504. |
12 | Li L, Xu J, Li G, et al. Preparation of graphene nanosheets by shear⁃assisted supercritical CO2 exfoliation[J]. Chemical Engineering Journal, 2016, 284: 78⁃84. |
13 | Song N, Jia J, Wang W, et al. Green production of pristine graphene using fluid dynamic force in supercritical CO2 [J]. Chemical Engineering Journal, 2016, 298: 198⁃205. |
14 | Shang T, Feng G, Li Q, et al. Production of graphene nanosheets by supercritical CO2 process coupled with micro⁃jet exfoliation[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2017, 25(12): 691⁃ 698. |
15 | Yu K P, Chen X P, Xiang X M, et al. Preparation of graphene by supercritical CO2 circulating exfoliation with a jet cavitation[J].The Journal of Supercritical Fluids, 2022, 186:105 605⁃105 615. |
16 | Lu B N, Yu K P, Zhu L, et al. Cavitation stripping of graphene by circulating supercritical carbon dioxide jet and its properties[J].Journal of CO2 Utilization, 2022, 65: 102 249⁃102 256. |
17 | Li L, Yu K P, Lu B N, et al. Preparation of graphene by circulating supercritical CO2 jet cavitation and its application in flexible sensor films[J]. Applied Surface Science,2024, 654: 159507. |
18 | Sim H S, Kim T A, Lee K H, et al. Preparation of graphene nanosheets through repeated supercritical carbon dioxide process[J].Materials Letters,2012,89: 343–346. |
19 | Zhu H Y, Wang Q B, Yin J Z, High⁃pressure induced exfoliation for regulating the morphology of graphene in supercritical CO2 system[J]. Carbon,2021, 178: 211⁃222. |
20 | Gai Y, Wang W, Xiao D, et al. Ultrasound coupled with supercritical carbon dioxide for exfoliation of graphene: simulation and experiment[J]. Ultrasonics Sonochemistry, 2018, 41: 181⁃188. |
21 | Adel M, Abdel⁃Karim R, Abdelmoneim A. Studying the conversion of graphite into nanographene sheets using supercritical phase exfoliation method[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2020, 28(7): 589⁃602. |
22 | Hernandez Y, Niclosi V, Lotya M, et al. High⁃yield production of graphene by liquid⁃phase exfoliation of graphite[J].Nature Nanotechnology, 2008,3(9): 563⁃568. |
23 | Wu B, Yang X. A molecular simulation of interactions between graphene nanosheets and supercritical CO2 [J]. Journal of Colloid and Interface Science, 2011, 361(1): 1⁃8. |
24 | Paton K R, Varrla E, Backes C, et al. Scalable production of large quantities of defect⁃free few⁃layer graphene by shear exfoliation in liquids[J]. Nature Materials, 2014, 13(6): 624⁃630. |
25 | Gao H, Zhu K, Hu G, et al. Large⁃scale graphene production by ultrasound⁃assisted exfoliation of natural graphite in supercritical CO2/H2O medium[J]. Chemical Engineering Journal, 2017, 308:872⁃879. |
26 | Xu S, Xu Q, Wang N, et al. Reverse⁃micelle⁃induced exfoliation of graphite into graphene nanosheets with assistance of supercritical CO2 [J]. Chemistry of Materials, 2015, 27(9): 3 262⁃3 272. |
27 | Li L, Zheng X, Wang J, et al. Solvent⁃exfoliated and functionalized graphene with assistance of supercritical carbon dioxide[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(1): 144⁃151. |
28 | Zheng X, Xu Q, Li J, et al. High⁃throughput, direct exfoliation of graphite to graphene via a cooperation of supercritical CO2 and pyrene⁃polymers[J]. RSC Advances, 2012, 2(28): 10 632⁃10 638. |
29 | Kim Y H, Lee H M, Choi S W, et al. A study on amphiphilic fluorinated block copolymer in graphite exfoliation using supercritical CO2 for stable graphene dispersion[J]. Journal of Colloid and Interface Science, 2018, 510:162⁃171. |
30 | Xu Q Q, Zhao W, Zhi J T, et al. Exfoliation of graphite in CO2 expanded organic solvents combined with low speed shear mixing [J]. Carbon, 2018, 135: 180⁃186. |
31 | Xu Q Q, Zhi J T, Zhu H Y, et al. Production of graphene by impinging jets exfoliation in the binary system of CO2 and N⁃Methyl Pyrrolidone [J]. Nanotechnology, 2020, 31: 265 601⁃265 623. |
32 | Wang Q B, Yin J Z, Xu Q Q, et al. insightful understanding of shear⁃assisted supercritical CO2 exfoliation for fabricating graphene nanosheets through the combination of kinetics and process parameters[J]. Industrial & Engineering Chemistry Research, 2020, 59(23):10 967⁃10 975. |
33 | Gai Y Z, Wang W C, Xiao D, et al. Exfoliation of graphite into graphene by a rotor-stator in supercritical CO2: experiment and simulation [J].Industrial & Engineering Chemistry Research, 2018, 57:8 220⁃8 229. |
34 | Zhang N, Zhang Y M, Duan C J, et al. Supercritical CO2⁃assisted microfluidization as ultrahigh efficiency strategy for graphene preparation[J]. Journal of Materials Science, 2021, 56:15 653⁃15 666. |
35 | Chen Z, Miao H, Wu J, et al. Scalable production of hydrophilic graphene nanosheets via in situ ball⁃milling⁃assisted supercritical CO2 exfoliation[J]. Industrial & Engineering Chemistry Research, 2017, 56(24): 6 939⁃6 944. |
36 | Zhu H Y, Wang Q B, Zhang Y, et al. Supercritical CO2 microemulsion containing [Emim][Tf2N] coupled jet impact exfoliation of graphene and its application to supercapacitors[J].Journal of Supercritical Fluids, 2022, 183: 105559. |
37 | Wang J, Zhao C X, Mark L H, et al. Facilitating supercritical CO2 assisted exfoliation of graphene nanoplatelets with the polymer matrix[J].Chemical Engineering Journal,2020,394: 124 930⁃124 938. |
38 | Navik R, Tan H J, Zhang H, et al. Scalable production of polyamide-6/graphene composites with enhanced electromagnetic shielding and thermal conductivity[J].Chemical Engineering Journal,2023,471:144445. |
[1] | DONG Guang, HOU Yangzhe, YUAN Hongyue, LIU Xianhu, PAN Yamin. Progress in porous poly(lactic acid) material and their structure and performance optimization [J]. China Plastics, 2024, 38(8): 132-140. |
[2] | SUN He, HE Xin, LUO Tongyu, JI Xin, LIAO Qiling, ZHANG Yuxia, ZHOU Hongfu. Study on electromagnetic interference shielding properties of ABS/CNTs/Fe3O4 composite and its bimodal foam [J]. China Plastics, 2024, 38(8): 46-52. |
[3] | WEI Jia, LIU Kai, PENG Lijuan, TIAN Yangyang, ZHAO Lin, LI Yanhong, YANG Peipei, LI Songwei, LU Bo. Preparation and adsorption properties of chitosan/polyaniline⁃GO nicotine molecule⁃imprinted composites [J]. China Plastics, 2024, 38(7): 32-36. |
[4] | DU Rong, LIN Tong, XIAO Hang, YIN Lyu, ZHANG Jin. Research progress in preparation, properties and applications of nano⁃Fe3O4 modified epoxy resin [J]. China Plastics, 2024, 38(6): 132-138. |
[5] | CAO Shuai, JIANG Tao, LIU Xiong, WANG Ying, LI Wenge, WU Xinfeng. Research progress in preparation of thermal conductive composites with MXene [J]. China Plastics, 2024, 38(6): 139-144. |
[6] | WANG Xiaohui, DONG Liming, GU Junjie, YAO Bing, CHEN Yan, LI Jing. Synthesis of 2,6⁃monosubstituted bisphenol A isophthalaldehyde phenolic resin and its applications in reversible thermochromic composite NiBR film [J]. China Plastics, 2024, 38(4): 32-39. |
[7] | CHEN Zhengcong, LIN Rui, HE Yi, LI Song. Study on properties of asphalt modified with SBS/graphene composite [J]. China Plastics, 2024, 38(4): 54-59. |
[8] | XU Jinjia, HUANG Teng, BAI Zhicheng, SHEN Jiahao, XIE Qingyi, ZHU Junhui, DAI Jinfeng, LIU Yuanqiang, ZHAN Xianxu. Flame retardancy and smoke suppression of rigid polyurethane foam coated with chitosan⁃sulfonated graphene through layer⁃by⁃layer self⁃assembly [J]. China Plastics, 2024, 38(3): 38-43. |
[9] | JIANG Shuaihua, LI Zhuolun, LU Haofan, SUN Yibo, WANG Xiangdong, CHEN Shihong, WU Lili. Study on preparation and properties of high strength PS/PPO open cell foams induced by stabilized island structure [J]. China Plastics, 2024, 38(3): 49-53. |
[10] | WU Junfeng, YANG Shenyu. Preparation and performance characterizations of polyhydroxyalkanoate/graphene oxide composites [J]. China Plastics, 2024, 38(10): 43-47. |
[11] | LI Dan, ZHAO Biao, CHEN Ke, WANG Fan, ZHANG Jingyu, ZHANG Fengbo, PAN Kai. Research progress in preparation and applications of hollow polypropylene fiber [J]. China Plastics, 2023, 37(9): 109-114. |
[12] | JIAO Yang, WANG Longzhen, CAI Zhuorui, LIU Ronghao, ZHANG Yuxia, ZHOU Hongfu. Study on preparation and resilience of PBAT foams with high volume expansion ratio [J]. China Plastics, 2023, 37(9): 19-27. |
[13] | ZHOU Long, DU Guoyong, DENG Chunping. Preparation and performance of superhydrophobic⁃superlipophilic melamine sponge for oil⁃water separation [J]. China Plastics, 2023, 37(9): 28-38. |
[14] | ZHOU Long, DU Guoyong, DENG Chunping. Preparation and oil⁃water separation performance of superhydrophilic⁃underwater superoleophobic polyurethane sponge [J]. China Plastics, 2023, 37(8): 28-37. |
[15] | GONG Zheng, LI Weijie, ZHAO Ling, HU Dongdong. Chain⁃extended modification of isotactic polybutene-1 and its supercritical CO2 foaming behavior [J]. China Plastics, 2023, 37(12): 1-6. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||