京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2024, Vol. 38 ›› Issue (6): 51-59.DOI: 10.19491/j.issn.1001-9278.2024.06.008
• Materials and Properties • Previous Articles Next Articles
FAN Wenxuan1,2,3(), XU Shuangping1,2(
), JIA Hongge1,2, ZHANG mingyu1,2, QU Yanqing1,2
Received:
2023-10-30
Online:
2024-06-26
Published:
2024-06-20
CLC Number:
FAN Wenxuan, XU Shuangping, JIA Hongge, ZHANG mingyu, QU Yanqing. Preparation of rigid⁃group⁃bridged polysiloxanes/ethylcellulose mixed membranes for CO2 separation[J]. China Plastics, 2024, 38(6): 51-59.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plaschina.com.cn/EN/10.19491/j.issn.1001-9278.2024.06.008
类交联聚硅氧烷质量分数/% | EC/g | 6FBPMS/g | NTBPMS/g | BAFBPMS/g |
---|---|---|---|---|
5 | 0.90 | — | 0.05 | — |
10 | 0.90 | 0.10 | 0.10 | 0.10 |
20 | 0.90 | 0.23 | 0.23 | 0.23 |
30 | 0.90 | 0.39 | 0.39 | 0.39 |
40 | 0.90 | 0.60 | 0.60 | 0.60 |
50 | 0.90 | 0.90 | — | 0.90 |
类交联聚硅氧烷质量分数/% | EC/g | 6FBPMS/g | NTBPMS/g | BAFBPMS/g |
---|---|---|---|---|
5 | 0.90 | — | 0.05 | — |
10 | 0.90 | 0.10 | 0.10 | 0.10 |
20 | 0.90 | 0.23 | 0.23 | 0.23 |
30 | 0.90 | 0.39 | 0.39 | 0.39 |
40 | 0.90 | 0.60 | 0.60 | 0.60 |
50 | 0.90 | 0.90 | — | 0.90 |
样品 | 类交联聚硅氧烷 含量/% | 断裂 伸长率/% | 拉伸强度/MPa | 弹性模量/MPa |
---|---|---|---|---|
EC | — | 21.6 | 44.5 | 559 |
6FBPMS/EC | 10 | 6.30 | 38.0 | 603 |
20 | 5.10 | 35.8 | 978 | |
30 | 3.56 | 25.7 | 2 227 | |
40 | 1.30 | 10.6 | 3 595 | |
50 | 1.40 | 5.57 | 4 678 | |
NTBPMS/EC | 5 | 18.0 | 40.5 | 43.4 |
10 | 13.4 | 26.9 | 56.7 | |
20 | 5.50 | 16.6 | 107 | |
30 | 2.20 | 7.22 | 373 | |
40 | 1.64 | 6.58 | 645 | |
BAFBPMS/EC | 10 | 3.76 | 39.1 | 431 |
20 | 2.33 | 37.6 | 611 | |
30 | 4.56 | 25.4 | 1 557 | |
40 | 0.86 | 12.8 | 2 073 | |
50 | 1.16 | 3.32 | 3 176 |
样品 | 类交联聚硅氧烷 含量/% | 断裂 伸长率/% | 拉伸强度/MPa | 弹性模量/MPa |
---|---|---|---|---|
EC | — | 21.6 | 44.5 | 559 |
6FBPMS/EC | 10 | 6.30 | 38.0 | 603 |
20 | 5.10 | 35.8 | 978 | |
30 | 3.56 | 25.7 | 2 227 | |
40 | 1.30 | 10.6 | 3 595 | |
50 | 1.40 | 5.57 | 4 678 | |
NTBPMS/EC | 5 | 18.0 | 40.5 | 43.4 |
10 | 13.4 | 26.9 | 56.7 | |
20 | 5.50 | 16.6 | 107 | |
30 | 2.20 | 7.22 | 373 | |
40 | 1.64 | 6.58 | 645 | |
BAFBPMS/EC | 10 | 3.76 | 39.1 | 431 |
20 | 2.33 | 37.6 | 611 | |
30 | 4.56 | 25.4 | 1 557 | |
40 | 0.86 | 12.8 | 2 073 | |
50 | 1.16 | 3.32 | 3 176 |
样品 | 类交联聚硅氧烷含量/% | Td5/℃a | Td25/℃a | R600/%b |
---|---|---|---|---|
EC | — | 312 | 355 | 3.86 |
6FBPMS | — | 266 | 446 | 22.1 |
6FBPMS/EC | 10 | 306 | 349 | 9.58 |
20 | 277 | 342 | 10.6 | |
30 | 291 | 345 | 13.4 | |
40 | 284 | 341 | 15.7 | |
50 | 288 | 344 | 18.2 | |
NTBPMS | — | 308 | 365 | 37.8 |
NTBPMS/EC | 5 | 212 | 350 | 3.94 |
10 | 288 | 363 | 13.5 | |
20 | 291 | 370 | 18.2 | |
30 | 267 | 358 | 21.1 | |
40 | 281 | 370 | 23.4 | |
BAFBPMS | — | 287 | 413 | 45.0 |
BAFBPMS/EC | 10 | 274 | 363 | 8.14 |
20 | 305 | 365 | 8.29 | |
30 | 297 | 367 | 14.8 | |
40 | 278 | 367 | 14.4 | |
50 | 250 | 355 | 17.0 |
样品 | 类交联聚硅氧烷含量/% | Td5/℃a | Td25/℃a | R600/%b |
---|---|---|---|---|
EC | — | 312 | 355 | 3.86 |
6FBPMS | — | 266 | 446 | 22.1 |
6FBPMS/EC | 10 | 306 | 349 | 9.58 |
20 | 277 | 342 | 10.6 | |
30 | 291 | 345 | 13.4 | |
40 | 284 | 341 | 15.7 | |
50 | 288 | 344 | 18.2 | |
NTBPMS | — | 308 | 365 | 37.8 |
NTBPMS/EC | 5 | 212 | 350 | 3.94 |
10 | 288 | 363 | 13.5 | |
20 | 291 | 370 | 18.2 | |
30 | 267 | 358 | 21.1 | |
40 | 281 | 370 | 23.4 | |
BAFBPMS | — | 287 | 413 | 45.0 |
BAFBPMS/EC | 10 | 274 | 363 | 8.14 |
20 | 305 | 365 | 8.29 | |
30 | 297 | 367 | 14.8 | |
40 | 278 | 367 | 14.4 | |
50 | 250 | 355 | 17.0 |
样品 | 添加量/% | 厚度/μm | P /Barrer a | α | |||
---|---|---|---|---|---|---|---|
CO2 | CH4 | N2 | CO2/CH4 | CO2/N2 | |||
EC | — | 127 | 43.2 | 5.26 | 2.40 | 8.21 | 18.0 |
6FBPMS/EC | 10 | 47.1 | 117.0 | 11.10 | 6.03 | 10.50 | 19.3 |
20 | 52.5 | 101.0 | 6.80 | 5.01 | 14.80 | 20.1 | |
30 | 54.2 | 68.1 | 4.24 | 3.32 | 16.10 | 20.5 | |
40 | 75.4 | 59.9 | 4.05 | 2.72 | 14.80 | 21.9 | |
50 | 75.0 | 39.6 | 2.94 | 1.93 | 13.50 | 20.5 | |
NTBPMS/EC | 5 | 60.2 | 116.0 | 10.50 | 5.86 | 11.10 | 19.9 |
10 | 65.7 | 146.0 | 12.20 | 6.14 | 11.90 | 23.8 | |
20 | 90.4 | 213.0 | 20.30 | 10.20 | 10.50 | 20.9 | |
30 | 75.6 | 191.0 | 19.30 | 11.20 | 9.99 | 17.1 | |
40 | 79.5 | 119.0 | 12.70 | 9.92 | 9.38 | 12.0 | |
BAFBPMS/EC | 10 | 45.8 | 136.0 | 14.70 | 7.26 | 9.26 | 18.7 |
20 | 43.5 | 106.0 | 11.00 | 5.06 | 9.64 | 20.9 | |
30 | 68.4 | 94.7 | 9.30 | 4.92 | 10.20 | 19.9 | |
40 | 71.2 | 71.5 | 6.51 | 4.29 | 11.00 | 16.7 | |
50 | 70.2 | 51.6 | 5.56 | 3.62 | 9.30 | 14.3 |
样品 | 添加量/% | 厚度/μm | P /Barrer a | α | |||
---|---|---|---|---|---|---|---|
CO2 | CH4 | N2 | CO2/CH4 | CO2/N2 | |||
EC | — | 127 | 43.2 | 5.26 | 2.40 | 8.21 | 18.0 |
6FBPMS/EC | 10 | 47.1 | 117.0 | 11.10 | 6.03 | 10.50 | 19.3 |
20 | 52.5 | 101.0 | 6.80 | 5.01 | 14.80 | 20.1 | |
30 | 54.2 | 68.1 | 4.24 | 3.32 | 16.10 | 20.5 | |
40 | 75.4 | 59.9 | 4.05 | 2.72 | 14.80 | 21.9 | |
50 | 75.0 | 39.6 | 2.94 | 1.93 | 13.50 | 20.5 | |
NTBPMS/EC | 5 | 60.2 | 116.0 | 10.50 | 5.86 | 11.10 | 19.9 |
10 | 65.7 | 146.0 | 12.20 | 6.14 | 11.90 | 23.8 | |
20 | 90.4 | 213.0 | 20.30 | 10.20 | 10.50 | 20.9 | |
30 | 75.6 | 191.0 | 19.30 | 11.20 | 9.99 | 17.1 | |
40 | 79.5 | 119.0 | 12.70 | 9.92 | 9.38 | 12.0 | |
BAFBPMS/EC | 10 | 45.8 | 136.0 | 14.70 | 7.26 | 9.26 | 18.7 |
20 | 43.5 | 106.0 | 11.00 | 5.06 | 9.64 | 20.9 | |
30 | 68.4 | 94.7 | 9.30 | 4.92 | 10.20 | 19.9 | |
40 | 71.2 | 71.5 | 6.51 | 4.29 | 11.00 | 16.7 | |
50 | 70.2 | 51.6 | 5.56 | 3.62 | 9.30 | 14.3 |
样品 | 添加量 /% | P/barrer a | Sb | Dc | ||||||
---|---|---|---|---|---|---|---|---|---|---|
CO2 | CH4 | N2 | CO2 | CH4 | N2 | CO2 | CH4 | N2 | ||
EC | — | 43.20 | 5.26 | 2.40 | 23.60 | 0.70 | 2.00 | 1.83 | 7.51 | 1.20 |
6FBPMS/EC | 10 | 116.64 | 11.08 | 6.03 | 142.24 | 7.80 | 6.15 | 0.82 | 1.42 | 0.98 |
20 | 100.93 | 6.80 | 5.01 | 101.95 | 3.98 | 4.47 | 0.99 | 1.71 | 1.12 | |
30 | 68.12 | 4.24 | 3.32 | 63.66 | 2.29 | 2.55 | 1.07 | 1.85 | 1.30 | |
40 | 59.78 | 4.05 | 2.72 | 29.02 | 1.13 | 1.09 | 2.06 | 3.59 | 2.49 | |
50 | 39.59 | 2.94 | 1.93 | 11.06 | 0.66 | 0.54 | 3.58 | 4.44 | 3.52 | |
NTBPMS/EC | 5 | 116.36 | 10.50 | 5.86 | 168.64 | 6.60 | 6.30 | 0.69 | 1.59 | 0.93 |
10 | 145.91 | 12.22 | 6.14 | 180.14 | 6.64 | 5.53 | 0.81 | 1.84 | 1.11 | |
20 | 212.69 | 20.26 | 10.19 | 136.34 | 7.76 | 4.67 | 1.56 | 2.61 | 2.18 | |
30 | 191.19 | 19.31 | 11.20 | 177.03 | 6.46 | 7.83 | 1.08 | 2.99 | 1.43 | |
40 | 119.10 | 12.69 | 9.92 | 130.88 | 4.47 | 9.63 | 0.91 | 2.84 | 1.03 | |
BAFBPMS/EC | 10 | 136.16 | 14.70 | 7.26 | 82.52 | 31.96 | 18.62 | 1.65 | 0.46 | 0.39 |
20 | 105.61 | 10.96 | 5.06 | 108.88 | 19.57 | 9.92 | 0.97 | 0.56 | 0.51 | |
30 | 94.73 | 9.30 | 4.92 | 34.96 | 5.60 | 3.76 | 2.71 | 1.66 | 1.31 | |
40 | 71.49 | 6.51 | 4.29 | 18.28 | 2.52 | 2.63 | 3.91 | 2.58 | 1.63 | |
50 | 51.75 | 5.56 | 3.62 | 1.66 | 0.32 | 1.73 | 31.07 | 17.33 | 2.09 |
样品 | 添加量 /% | P/barrer a | Sb | Dc | ||||||
---|---|---|---|---|---|---|---|---|---|---|
CO2 | CH4 | N2 | CO2 | CH4 | N2 | CO2 | CH4 | N2 | ||
EC | — | 43.20 | 5.26 | 2.40 | 23.60 | 0.70 | 2.00 | 1.83 | 7.51 | 1.20 |
6FBPMS/EC | 10 | 116.64 | 11.08 | 6.03 | 142.24 | 7.80 | 6.15 | 0.82 | 1.42 | 0.98 |
20 | 100.93 | 6.80 | 5.01 | 101.95 | 3.98 | 4.47 | 0.99 | 1.71 | 1.12 | |
30 | 68.12 | 4.24 | 3.32 | 63.66 | 2.29 | 2.55 | 1.07 | 1.85 | 1.30 | |
40 | 59.78 | 4.05 | 2.72 | 29.02 | 1.13 | 1.09 | 2.06 | 3.59 | 2.49 | |
50 | 39.59 | 2.94 | 1.93 | 11.06 | 0.66 | 0.54 | 3.58 | 4.44 | 3.52 | |
NTBPMS/EC | 5 | 116.36 | 10.50 | 5.86 | 168.64 | 6.60 | 6.30 | 0.69 | 1.59 | 0.93 |
10 | 145.91 | 12.22 | 6.14 | 180.14 | 6.64 | 5.53 | 0.81 | 1.84 | 1.11 | |
20 | 212.69 | 20.26 | 10.19 | 136.34 | 7.76 | 4.67 | 1.56 | 2.61 | 2.18 | |
30 | 191.19 | 19.31 | 11.20 | 177.03 | 6.46 | 7.83 | 1.08 | 2.99 | 1.43 | |
40 | 119.10 | 12.69 | 9.92 | 130.88 | 4.47 | 9.63 | 0.91 | 2.84 | 1.03 | |
BAFBPMS/EC | 10 | 136.16 | 14.70 | 7.26 | 82.52 | 31.96 | 18.62 | 1.65 | 0.46 | 0.39 |
20 | 105.61 | 10.96 | 5.06 | 108.88 | 19.57 | 9.92 | 0.97 | 0.56 | 0.51 | |
30 | 94.73 | 9.30 | 4.92 | 34.96 | 5.60 | 3.76 | 2.71 | 1.66 | 1.31 | |
40 | 71.49 | 6.51 | 4.29 | 18.28 | 2.52 | 2.63 | 3.91 | 2.58 | 1.63 | |
50 | 51.75 | 5.56 | 3.62 | 1.66 | 0.32 | 1.73 | 31.07 | 17.33 | 2.09 |
1 | Oh H T, Kum J, Park J, et al. Pre⁃combustion CO2 capture using amine⁃based absorption process for blue H2 production from steam methane reformer[J]. Energy Conversion and Management, 2022, 262: 115632. |
2 | Jang D, Bakli C, Chakraborty S, et al. Molecular Self‐Assembly Enables Tuning of Nanopores in Atomically Thin Graphene Membranes for Highly Selective Transport[J]. Advanced Materials, 2022, 34(11): 2108940. |
3 | Baena⁃Moreno F M, le Sache E, Pastor⁃Perez L, et al. Membrane⁃based technologies for biogas upgrading: a review[J]. Environmental Chemistry Letters, 2020, 18: 1 649⁃1 658. |
4 | Goh S H, Lau H S, Yong W F. Metal–Organic Frameworks (MOFs)‐Based Mixed Matrix Membranes (MMMs) for Gas Separation: A Review on Advanced Materials in Harsh Environmental Applications[J]. Small, 2022, 18(20): 2107536. |
5 | Lu X, Ren T, Cao P, et al. Construction of high performance binder⁃free zeolite monolith[J]. Chemical Engineering Journal, 2022, 447: 137558. |
6 | Galizia M, Chi W S, Smith Z P, et al. 50th anniversary perspective: polymers and mixed matrix membranes for gas and vapor separation: a review and prospective opportunities[J]. Macromolecules, 2017, 50(20): 7 809⁃7 843. |
7 | Lai H W H, Benedetti F M, Ahn J M, et al. Hydrocarbon ladder polymers with ultrahigh permselectivity for membrane gas separations[J]. Science, 2022, 375(6587): 1 390⁃1 392. |
8 | Kamble A R, Patel C M, Murthy Z V P. A review on the recent advances in mixed matrix membranes for gas separation processes[J]. Renewable and Sustainable Energy Reviews, 2021, 145: 111062. |
9 | Torres D, Pérez⁃Rodríguez S, Cesari L, et al. Review on the preparation of carbon membranes derived from phenolic resins for gas separation: from petrochemical precursors to bioresources[J]. Carbon, 2021, 183: 12⁃33. |
10 | Fan W, Zhang X, Kang Z, et al. Isoreticular chemistry within metal–organic frameworks for gas storage and separation[J]. Coordination Chemistry Reviews, 2021, 443: 213968. |
11 | Yong W F, Zhang H. Recent advances in polymer blend membranes for gas separation and pervaporation[J]. Progress in Materials Science, 2021, 116: 100713. |
12 | Qian Q, Asinger P A, Lee M J, et al. MOF⁃based membranes for gas separations[J]. Chemical Reviews, 2020, 120(16): 8 161⁃8 266. |
13 | Rafiq S, Deng L, Hägg May⁃Britt. Role of Facilitated Transport Membranes and Composite Membranes for Efficient CO2 Capture⁃A Review[J]. Chem Bio Eng Reviews, 2016, 3(2): 68⁃85. |
14 | Wang M, Zhao J, Wang X, et al. Recent progress on submicron gas⁃selective polymeric membranes[J]. Journal of Materials Chemistry A, 2017, 5(19): 8 860⁃8 886. |
15 | Park H B, Kamcev J, Robeson L M, et al. Maximizing the right stuff: The trade⁃off between membrane permeability and selectivity[J]. Science, 2017, 356(6343): eaab0530. |
16 | Robeson L M. The upper bound revisited[J]. Journal of membrane science, 2008, 320(1/2): 390⁃400. |
17 | Wang F, Zhang Z, Shakir I, et al. 2D polymer nanosheets for membrane separation[J]. Advanced Science, 2022, 9(8): 2103814. |
18 | McHattie J S, Koros W J, Paul D R. Gas transport properties of polysulphones: 1. Role of symmetry of methyl group placement on bisphenol rings[J]. Polymer, 1991, 32(5): 840⁃850. |
19 | Wang C, Cai Z, Xie W, et al. Finely tuning the microporosity in dual thermally crosslinked polyimide membranes for plasticization resistance gas separations[J]. Journal of Membrane Science, 2022, 659: 120769. |
20 | Song N, Ma T, Wang T,et al. Microporous polyimides with high surface area and CO2 selectivity fabricated from cross⁃linkable linear polyimides[J]. Journal of Colloid and Interface Science, 2020, 573: 328⁃335. |
21 | Park S, Lee A S, Do Y S, et al. Side⁃chain engineering of ladder⁃structured polysilsesquioxane membranes for gas separations[J]. Journal of Membrane Science, 2016, 516: 202⁃214. |
22 | Zhang Caili. Synthesis and characterization of bis(phenyl)fluorene⁃based cardo polyimide membranes for H2/CH4 separation[J]. Journal of Materials Science, 2019, 54(14): 10 560⁃10 569. |
23 | Wang Z, Ren H, Zhang S,et al. Carbon Molecular Sieve Membranes Derived from Trger's Base⁃Based Microporous Polyimide for Gas Separation[J]. ChemSusChem, 2018,11(5): 916⁃923. |
24 | Shin J H, Yu H J, Park J, et al. Fluorine⁃containing polyimide/polysilsesquioxane carbon molecular sieve membranes and techno⁃economic evaluation thereof for C3H6/C3H8 separation[J]. Journal of Membrane Science, 2020, 598: 117660. |
25 | Yuan Z, He G W, Li S, et al. Gas separations using nanoporous atomically thin membranes: Recent theoretical, simulation, and experimental advances[J]. Advanced Materials, 2022, 34(32): 2201472. |
26 | Chen G, Zhu H, Hang Y, et al. Simultaneously enhancing interfacial adhesion and pervaporation separation performance of PDMS/ceramic composite membrane via a facile substrate surface grafting approach[J]. AIChE Journal, 2019, 65(11): e16773. |
27 | Shamsabadi A A, Rezakazemi M, Seidi F,et al. Next generation polymers of intrinsic microporosity with tunable moieties for ultrahigh permeation and precise molecular CO2 separation[J]. Progress in Energy and Combustion Science, 2021, 84: 100903. |
28 | Hou S, Suo X, Chen N,et al. Facile synthesis of a linear porous organic polymer via Schiff⁃base chemistry for propyne/propylene separation[J]. Polymer Chemistry, 2020, 11(27): 4 382⁃4 386. |
29 | Bezzu C G, Carta M, Ferrari M C,et al. The synthesis, chain⁃packing simulation and long⁃term gas permeability of highly selective spirobifluorene⁃based polymers of intrinsic microporosity[J]. Journal of Materials Chemistry A, 2018, 6(22): 10 507⁃10 514. |
30 | Qian K, Fang J, Liu R,et al. Six⁃membered ring copolyimides as novel high performance membrane materials for gas separations[J]. Materials Today Communications, 2018, 14: 254⁃262. |
31 | Hu X, Mu H, Miao J,et al. Synthesis and gas separation performance of intrinsically microporous polyimides derived from sterically hindered binaphthalenetetracarboxylic dianhydride[J]. Polymer Chemistry, 2020, 11(25): 4 172. |
32 | Xu S, Ma W, Zhou H,et al.A Novel Imide⁃Bridged Polysiloxane Membrane Was Prepared via One⁃Pot Hydrosilylation Reaction for O2/N2 Separation[J]. ACS Omega, 2021, 6(30): 19 553⁃19 558. |
33 | Garrison T F, Murawski A, Quirino R L. Bio⁃based polymers with potential for biodegradability[J]. Polymers, 2016, 8(7): 262. |
34 | Garcia⁃Valdez O, Champagne P, Cunningham M F. Graft modification of natural polysaccharides via reversible deactivation radical polymerization[J]. Progress in Polymer Science, 2018, 76: 151⁃173. |
35 | Klemm D, Heublein B, Fink H P, et al. Cellulose: fascinating biopolymer and sustainable raw material[J]. Angewandte chemie international edition, 2005, 44(22): 3 358⁃3 393. |
36 | Xu J, Jia H, Yang N, et al. High efficiency gas permeability membranes from ethyl cellulose grafted with ionic liquids[J]. Polymers, 2019, 11(11): 1 900. |
37 | Zhao W, Ma W, Xu S, et al. Soluble Imide⁃Bridged Polypentamethyltrisiloxane (IBPPMS) with Rationally Designed Ladder⁃like Structure for O2/N2 Permselectivity[J]. Macromolecules, 2022, 55(21): 9 833⁃9 840. |
[1] | ZHANG Chao, XU Shuangping, JIA Hongge, ZHANG Mingyu, QU Yanqing, XU Jingyu. Progress in preparation of graphene⁃like carbon nitride and its application in gas separation [J]. China Plastics, 2023, 37(11): 62-73. |
[2] | QU Yanqing, ZHA Yuxin, JIA Hongge, XU Shuangping, ZHANG Mingyu. Research progress in preparation of separation membranes using interfacial polymerization technology [J]. China Plastics, 2022, 36(11): 150-157. |
[3] | . Preparation and Properties of Biodegradable Composite Films [J]. China Plastics, 2014, 28(10): 36-39 . |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||