京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2024, Vol. 38 ›› Issue (8): 88-93.DOI: 10.19491/j.issn.1001-9278.2024.08.014
• Additive • Previous Articles Next Articles
WU Weihong1, ZHANG Jing2, ZHANG Ge2(), GENG Rongrong2, QU Hongqiang2(
)
Received:
2023-10-24
Online:
2024-08-26
Published:
2024-08-19
CLC Number:
WU Weihong, ZHANG Jing, ZHANG Ge, GENG Rongrong, QU Hongqiang. Preparation of piperazine pyrophosphate @COF flame retardant and its flame retardant effect on epoxy resin[J]. China Plastics, 2024, 38(8): 88-93.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plaschina.com.cn/EN/10.19491/j.issn.1001-9278.2024.08.014
样品名称 | LOI/% | UL 94 | ||
---|---|---|---|---|
有焰燃烧时间(t1)/s | 有焰燃烧时间(t2)/s | 滴落 | ||
EP | 23.7 | — | — | 无等级 |
EP/PAPP 1 | 24.6 | 24.7 | 4.2 | V⁃1 |
EP/PAPP 2 | 25.5 | 27.7 | 36.6 | V⁃1 |
EP/PAPP@COF 1 | 25.2 | — | — | 无等级 |
EP/PAPP@COF 2 | 30.0 | 29.0 | 2.5 | V⁃1 |
样品名称 | LOI/% | UL 94 | ||
---|---|---|---|---|
有焰燃烧时间(t1)/s | 有焰燃烧时间(t2)/s | 滴落 | ||
EP | 23.7 | — | — | 无等级 |
EP/PAPP 1 | 24.6 | 24.7 | 4.2 | V⁃1 |
EP/PAPP 2 | 25.5 | 27.7 | 36.6 | V⁃1 |
EP/PAPP@COF 1 | 25.2 | — | — | 无等级 |
EP/PAPP@COF 2 | 30.0 | 29.0 | 2.5 | V⁃1 |
样品名称 | PHRR/ kW·m-2 | tPHRR/ s | THR/ MJ·m-2 | PCOP/ g·s-1 | PCO2P/ g·s-1 |
---|---|---|---|---|---|
EP | 1 454.90 | 115 | 118.66 | 0.037 | 1.005 |
EP/PAPP 1 | 1 471.77 | 70 | 118.11 | 0.055 | 0.836 |
EP/PAPP 2 | 977.28 | 95 | 106.65 | 0.036 | 0.577 |
EP/PAPP@COF 1 | 1 363.87 | 110 | 118.13 | 0.043 | 0.842 |
EP/PAPP@COF 2 | 911.35 | 110 | 110.27 | 0.032 | 0.521 |
样品名称 | PHRR/ kW·m-2 | tPHRR/ s | THR/ MJ·m-2 | PCOP/ g·s-1 | PCO2P/ g·s-1 |
---|---|---|---|---|---|
EP | 1 454.90 | 115 | 118.66 | 0.037 | 1.005 |
EP/PAPP 1 | 1 471.77 | 70 | 118.11 | 0.055 | 0.836 |
EP/PAPP 2 | 977.28 | 95 | 106.65 | 0.036 | 0.577 |
EP/PAPP@COF 1 | 1 363.87 | 110 | 118.13 | 0.043 | 0.842 |
EP/PAPP@COF 2 | 911.35 | 110 | 110.27 | 0.032 | 0.521 |
样品名称 | 拉伸强度/MPa | 断裂伸长率/ % | 冲击强度/ kJ·m-2 |
---|---|---|---|
EP | 78.14±0.34 | 9.56±0.22 | 16.58±0.31 |
EP/PAPP 1 | 36.45±0.13 | 5.7±0.11 | 17.45±0.32 |
EP/PAPP 2 | 45.63±0.06 | 6.9±0.17 | 13.12±0.18 |
EP/PAPP@COF 1 | 49.16±0.02 | 6.18±0.14 | 16.85±0.14 |
EP/PAPP@COF 2 | 57.9±0.12 | 6.83±0.17 | 12.64±0.21 |
样品名称 | 拉伸强度/MPa | 断裂伸长率/ % | 冲击强度/ kJ·m-2 |
---|---|---|---|
EP | 78.14±0.34 | 9.56±0.22 | 16.58±0.31 |
EP/PAPP 1 | 36.45±0.13 | 5.7±0.11 | 17.45±0.32 |
EP/PAPP 2 | 45.63±0.06 | 6.9±0.17 | 13.12±0.18 |
EP/PAPP@COF 1 | 49.16±0.02 | 6.18±0.14 | 16.85±0.14 |
EP/PAPP@COF 2 | 57.9±0.12 | 6.83±0.17 | 12.64±0.21 |
1 | Liu L, Xu Y, Xu M, et al. Economical and facile synthesis of a highly efficient flame retardant for simultaneous improvement of fire retardancy, smoke suppression and moisture resistance of epoxy resins[J]. Composites Part B: Engineering, 2019, 167:422-433. |
2 | Fang F, Ran S, Fang Z, et al. Improved flame resistance and thermo-mechanical properties of epoxy resin nanocomposites from functionalized graphene oxide via self-assembly in water[J]. Composites Part B: Engineering, 2019, 165:406-416. |
3 | Jin F-L, Li X, Park S-J, Synthesis and application of epoxy resins : A review[J].Journal of Industrial and Engineering Chemistry, 2015, 29:1-11. |
4 | 胡志. 焦磷酸哌嗪膨胀型阻燃剂在环氧树脂中的阻燃性能研究[J].塑料工业, 2022, 50(11):157-160. |
HU Z. Study on flame retardance of epoxy resin containing piperazine pyrophosphate intumescent flame retardant[J]. China Plastics Industry, 2022, 50(11):157-160. | |
5 | 刘梦茹, 黄福临, 孙俊杰, 等. 基于焦磷酸哌嗪阻燃硬质聚氨酯泡沫制备及性能[J]. 过程工程学报, 2023, 23(04):571-579. |
LIU M R, HUANG F L, SUN J J,et al. Preparation and properties of piperazine pyrophosphate based flame retardant rigid polyurethane foam[J]. The Chinese Journal of Process Engineering, 2023, 23(04):571-579. | |
6 | 马殿普, 郎丽君, 潘飞, 等. 焦磷酸哌嗪协同次磷酸铝阻燃聚丙烯复合材料性能[J].工程塑料应用, 2023, 51(04):133-138. |
MA D P, LANG L J, PAN F,et al. Properties of polypropylene composites flame retarded by piperazine pyrophosphate and aluminum hypophosphite[J]. Engineering Plastics Application, 2023, 51(04):133-138. | |
7 | Sun H, Chen K, Liu Y, et al. Improving flame retardant and smoke suppression function of ethylene vinyl acetate by combining the piperazine pyrophosphate, expandable graphite and melamine phosphate[J]. European Polymer Journal, 2023, 194:112148. |
8 | Li S, Liu Y, Liu Y, et al. Synergistic effect of piperazine pyrophosphate and epoxy-octavinyl silsesquioxane on flame retardancy and mechanical properties of epoxy resin[J]. Composites Part B: Engineering, 2021, 223:109115. |
9 | Bagheri A-R, Aramesh N, Haddad P-R. Applications of covalent organic frameworks and their composites in the extraction of pesticides from different samples[J]. Journal of Chromatography A, 2022, 1 661:462-612. |
10 | Afshari M, Dinari M. A novel triazine-based covalent organic framework: Enhancement fire resistance and mechanical performances of thermoplastic polyurethanes[J]. Composites Part A: Applied Science and Manufacturing, 2021, 147:106453. |
11 | Mu X, Wang D, Pan Y, et al. A facile approach to prepare phosphorus and nitrogen containing macromolecular covalent organic nanosheets for enhancing flame retardancy and mechanical property of epoxy resin[J].Composites Part B: Engineering, 2019, 164: 390-399. |
12 | Xiao Y, Jin Z, He L, et al. Synthesis of a novel graphene conjugated covalent organic framework nanohybrid for enhancing the flame retardancy and mechanical properties of epoxy resins through synergistic effect[J].Composites Part B: Engineering, 2020, 182: 107616. |
13 | Ma W, Zheng Q, He Y, et al. Size-controllable synthesis of uniform spherical covalent organic frameworks at room temperature for highly efficient and selective enrichment of hydrophobic peptides[J]. Journal of the American Chemical Society, 2019, 141(45):18 271-18 277. |
14 | Zhang Y, Jing J, Liu T, et al. A molecularly engineered bioderived polyphosphate for enhanced flame retardant, UV-blocking and mechanical properties of poly(lactic acid)[J]. Chemical Engineering Journal, 2021, 411: 128493. |
15 | Hu Z, Zhong Z-Q, Gong X-D. Flame retardancy, thermal properties, and combustion behaviors of intumescent flame-retardant polypropylene containing (poly) piperazine pyrophosphate and melamine polyphosphate[J]. Polymers for Advanced Technologies, 2020, 31(11):2 701-2 710. |
16 | Zhang L, Yi D, Hao J. Poly (diallyldimethylammonium) and polyphosphate polyelectrolyte complexes as an all-in-one flame retardant for polypropylene[J]. Polymers for Advanced Technologies, 2019, 31(2):260-272. |
17 | Yuan Z, Wen H, Liu Y, et al. Synergistic effect between piperazine pyrophosphate and melamine polyphosphate in flame retarded glass fiber reinforced polypropylene[J]. Polymer Degradation and Stability, 2021, 184: 109477. |
18 | Xiao X, Zhai J, Chen T, et al. Flame retardant properties of polyamide 6 with piperazine pyrophosphate[J]. Plastics, Rubber and Composites, 2017, 46(5):193-199. |
19 | Wang W, Deng S, Ren L, et al. Stable covalent organic frameworks as efficient adsorbents for high and selective removal of an aryl-organophosphorus flame retardant from water[J]. ACS Applied Materials & Interfaces, 2018, 10(36):30 265-30 272. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||