京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2025, Vol. 39 ›› Issue (11): 13-19.DOI: 10.19491/j.issn.1001-9278.2025.11.003
• Materials and Properties • Previous Articles Next Articles
XU Chenglong(
), WANG Yu, LI Guo(
), XIE Linsheng, MA Yulu
Received:2024-11-27
Online:2025-11-26
Published:2025-11-21
CLC Number:
XU Chenglong, WANG Yu, LI Guo, XIE Linsheng, MA Yulu. Analysis of unstable flow behavior in PE⁃UHMW/PE⁃HD blends during capillary extrusion[J]. China Plastics, 2025, 39(11): 13-19.
| 试样 | 振荡畸变 | 螺旋熔体破裂 | 总熔体破裂 | |
|---|---|---|---|---|
临界剪切 速率/s-1 | 临界剪切 应力/kPa | 临界剪切 速率/s-1 | 临界剪切 速率/s-1 | |
| PE⁃HD | 428 | 272 | 774 | ⁃ |
| PE⁃UHMW/PE⁃HD | 116 | 342 | ⁃ | 522 |
| PE⁃UHMW | 27 | 395 | ⁃ | 450 |
| 试样 | 振荡畸变 | 螺旋熔体破裂 | 总熔体破裂 | |
|---|---|---|---|---|
临界剪切 速率/s-1 | 临界剪切 应力/kPa | 临界剪切 速率/s-1 | 临界剪切 速率/s-1 | |
| PE⁃HD | 428 | 272 | 774 | ⁃ |
| PE⁃UHMW/PE⁃HD | 116 | 342 | ⁃ | 522 |
| PE⁃UHMW | 27 | 395 | ⁃ | 450 |
| [1] | Shelly D, Lee S Y, Park S J. Compatibilization of ultra⁃high molecular weight polyethylene (PE⁃UHMW) fibers and their composites for superior mechanical performance: A concise review [J]. Composites Part B: Engineering, 2024, 275: 111294. |
| [2] | Li W, Li R, Li C, et al. Mechanical properties of surface⁃modified ultra⁃high molecular weight polyethylene fiber reinforced natural rubber composites [J]. Polymer Composites, 2017, 38(6): 1 215⁃1 220. |
| [3] | Shen H, He L, Fan C, et al. Effective dissolution of PE⁃UHMW in PE⁃HD improved by high temperature melting and subsequent shear[J]. Polymer Engineering & Science, 2015, 55(2): 270⁃276. |
| [4] | Kim T, Chae Y. Synthesis and application of novel high light fastness red dyes for ultra high molecular weight polyethylene fibers[J]. Fibers and Polymers, 2014, 15(2): 248⁃253. |
| [5] | Riveiro A, Soto R, Del Val J, et al. Laser surface modification of ultra⁃high⁃molecular⁃weight polyethylene (PE⁃UHMW) for biomedical applications[J]. Applied Surface Science, 2014, 302: 236⁃242. |
| [6] | XIE Y C, QI S B, BAI J Q, et al. Ballistic performance of flexible structures composed of PE⁃UHMW fibers and airbag: Effects of the stacking order [J]. International Journal of Impact Engineering, 2024, 191: 105008. |
| [7] | Khasraghi S S, Rezaei M. Preparation and characterization of PE⁃UHMW/PE⁃HD/MWCNT melt⁃blended nanocomposites[J]. Journal of Thermoplastic Composite Materials, 2015, 28(3): 305⁃326. |
| [8] | Yang H, Yilmaz G, Jiang J, et al. Pelletizing ultra⁃high molecular weight polyethylene (PE⁃UHMW) powders with a novel tapered die and addition of high density polyethylene (PE⁃HD): Processing, morphology, and properties [J]. Polymer, 2022, 256: 125171. |
| [9] | Lee H Y, Kim D H, Son Y. Anomalous rheological behavior of polyethylene melts in the gross melt fracture regime in the capillary extrusion [J]. Polymer, 2006, 47(11): 3 929⁃3 934. |
| [10] | Barone J R, Plucktaveesak N, Wang S Q. Interfacial molecular instability mechanism for sharkskin phenomenon in capillary extrusion of linear polyethylenes[J]. Journal of Rheology, 1998, 42(4): 813⁃832. |
| [11] | Delgadillo⁃Velazquez O, Hatzikiriakos S G. Processability of LLDPE/LDPE blends: Capillary extrusion studies. Polymer Engineering and Science, 2007, 47(9): 1 317⁃1 326. |
| [12] | Monchai S, Mieda N, Doan V A, et al. Effect of shear history on flow instability at capillary extrusion for long⁃chain branched polyethylene[J]. Journal of Applied Polymer Science, 2012, 124(1): 429⁃435. |
| [13] | Ansari M, Inn Y W, Sukhadia A M, et al. Melt fracture of PE⁃HDs: Metallocene versus Ziegler–Natta and broad MWD effects[J]. Polymer, 2012, 53(19): 4 195⁃4 201. |
| [14] | Adesina A A, Nasser M S, Hussein I A. Comparative Analysis of the Effect of Organoclay, Boron Nitride, and Fluoropolymer on the Rheology and Instabilities in the Extrusion of High Density Polyethylene[J]. International Journal of Polymer Science, 2015. |
| [15] | Allal A, Lavernhe A, Vergnes B, et al. Relationships between molecular structure and sharkskin defect for linear polymers[J]. Journal of Non⁃Newtonian Fluid Mechanics, 2006, 134(1⁃3 SPEC. ISS.): 127⁃135. |
| [16] | Ansari M, Derakhshandeh M, Doufas A A, et al. The role of microstructure on melt fracture of linear low density polyethylenes[J]. Polymer Testing, 2018, 67: 266⁃274. |
| [17] | 尹文艳. 不同润滑剂对高密度聚乙烯(PE⁃HD)流变性能影响的研究 [D]. 青岛科技大学, 2006. |
| [18] | Chen J, Yang W, Yu G P, et al. Continuous extrusion and tensile strength of self⁃reinforced PE⁃HD/PE⁃UHMW sheet[J]. Journal of Materials Processing Technology, 2008, 202(1): 165⁃169. |
| [19] | Shen H, He L, Fan C, et al. Improving the integration of PE⁃HD/PE⁃UHMW blends by high temperature melting and subsequent shear[J]. Materials Letters, 2015, 138: 247⁃250. |
| [20] | 郭浩东, 贾润礼. PE⁃UHMW/PE⁃HD自增强材料研究进展 [J]. 合成材料老化与应用, 2022, 51(02): 95⁃98. |
| GUO H D, JIA R L. Research progress of PE⁃UHMW/PE⁃HD self⁃reinforcing materials[J]. Synthetic Materials Aging and Application, 2022, 51(02): 95⁃98. | |
| [21] | 张强, 王庆昭, 陈勇. 熔纺超高分子量聚乙烯纤维初生丝制备及拉伸工艺 [J]. 工程塑料应用, 2023, 51(05): 81⁃85+97. |
| ZHANG Q, WANG Q Z, CHEN Y. Preparation and drawing process of melt⁃spun ultra high molecular weight polyethylene virgin fibers[J]. Polymer Materials and Engineering, 2023, 51(05): 81⁃85+97. | |
| [22] | 李果, 谢林生, 罗日萍, 等. 叠片式密炼机转子结构对混合特性的影响 [J]. 高分子材料科学与工程, 2014, 30(03): 134⁃138+43. |
| LI G, XIE L S, LUO R P, et al. The influence of rotor structure on mixing characteristics of laminated mixer[J]. Polymer Materials Science and Engineering, 2014, 30(03): 134⁃138+43. | |
| [23] | LIU M, WANG Y, CHEN J, et al. The retarded recovery of disentangled state by blending PE⁃HD with ultra⁃high molecular weight polyethylene [J]. Polymer, 2020, 192: 122329. |
| [24] | 吴其晔, 李 鹏, 王宁, et al. 聚合物熔体挤出畸变的指纹辨识及量化描述 [J]. 现代塑料加工应用, 2013, 25(02): 59⁃63. |
| WU Q Y, LI P, WANG N, et al. The fingerprinting and quantitative descriptions of extrudate distortions of polymer melts[J]. Modern Plastics Processing and Applications[J]. 2013, 25(02): 59⁃63. | |
| [25] | Cogswell F N. Stretching flow instabilities at the exits of extrusion dies[J]. Journal of Non⁃Newtonian Fluid Mechanics, 1977, 2(1): 37⁃47. |
| [26] | 张海琛. 基于拉伸流变的PE⁃UHMW熔融挤出过程及其结构与性能研究 [D].华南理工大学, 2017. |
| [27] | Zhang X, Zhao S, Xin Z. The chain dis⁃entanglement effect of polyhedral oligomeric silsesquioxanes (POSS) on ultra⁃high molecular weight polyethylene (PE⁃UHMW) [J]. Polymer, 2020, 202: 122631. |
| [28] | Joshi Y M, Lele A K, Mashelkar R A. A unified wall slip model[J]. Journal of Non⁃Newtonian Fluid Mechanics, 2000, 94(2): 135⁃149. |
| [29] | 王克俭, 周持兴. 考虑壁面滑移的Z⁃W流变模型及其应用 [J]. 高分子通报, 2003(01): 8⁃17. |
| WANG K J, ZHOU C X. Z⁃W rheological model for polymer melt considering wall slip and its applications[J]. Polymer Bulletin, 2003(01): 8⁃17. | |
| [30] | 刘丽超. 超高分子量聚乙烯改性料流变特性及熔融纺丝研究 [D].北京化工大学, 2020. |
| [31] | 吴其晔,巫静安. 高分子材料流变学 [M]. 北京:高等教育出版社, 2002. |
| [32] | Wang S Q. Molecular transitions and dynamics at polymer / wall interfaces: origins of flow instabilities and wall slip[J]. Advances in Polymer Science, 1999, 138: 227⁃275. |
| [33] | 廖华勇, 谭中欣, 陶国良. 聚合物熔体的壁面滑移行为 [J]. 高分子材料科学与工程, 2009, 25(12): 103⁃106. |
| LIAO H Y, TAN Z X, TAO G L. Wall slip behavior of polymer melt[J]. Polymer Materials Science and Engineering, 2009, 25(12): 103⁃106. |
| [1] | LIU Shuang, HAN Meizhao. Preparation of oxidized graphene nanoplatelet⁃modified epoxy resin and its effects on rheological properties of asphalt binder [J]. China Plastics, 2025, 39(7): 87-92. |
| [2] | ZHOU Qi, LI Quan, LI Yajing, LIU Xinan, GU Xinchun, HUANG Shouying. Rheological and mechanical properties of PPC and PLA blends [J]. China Plastics, 2025, 39(6): 31-35. |
| [3] | CHEN Tianhuan, YAN Cheng, JIANG Ganbing, GUO Shuai, YAN Tiantian, QIAN Kun, YU Kejing. Study on surface modification of PE⁃UHMW fiber by tannic acid and its interfacial property [J]. China Plastics, 2024, 38(8): 26-32. |
| [4] | SONG Ruiming, LYU Huaixing, ZHANG Wenlong, LI Bin, LI Hui. Degradation kinetics of ultra⁃high molecular⁃weight polyethylene for wet⁃process separator of lithium⁃ion battery [J]. China Plastics, 2024, 38(12): 24-28. |
| [5] | GONG Zheng, LI Weijie, ZHAO Ling, HU Dongdong. Chain⁃extended modification of isotactic polybutene-1 and its supercritical CO2 foaming behavior [J]. China Plastics, 2023, 37(12): 1-6. |
| [6] | GUO Xiaolei, LUO Jingyun, DING Xin, WANG Yuchen, NIE Minghan, SONG Jiajie, ZHANG Yan’e, HU Jing. Study on modification and foaming behavior of PHBV through chain extension [J]. China Plastics, 2022, 36(8): 73-79. |
| [7] | WANG Ke, LONG Chunguang. Mechanical and tribological properties of ultra⁃high molecular weight polyethylene/sepiolite fiber composites [J]. China Plastics, 2022, 36(5): 19-23. |
| [8] | XU Rongxia, WEI Gang, WEI Lilan, WU Jiecui, JIANG Yujiang. Friction and wear properties of PE⁃UHMW modified with nano⁃SiO2 and PA6 [J]. China Plastics, 2022, 36(4): 47-52. |
| [9] | HENG Yue, XUE Nanxiang, CHEN Zhuangxin, LEI Caihong, XU Ruijie. Dynamic rheological behavior and compatibility of polyethylene/paraffin oil blends [J]. China Plastics, 2022, 36(2): 13-18. |
| [10] | WANG Fei, LIU Lichao, XUE Ping. Study on mechanical properties and crystal structure of melt⁃spun PE⁃UHMW/PE⁃HD fibers [J]. China Plastics, 2022, 36(1): 47-52. |
| [11] | YANG Kang, ZENG Huayu, ZHONG Anlan, YUAN Huilin, ZENG Shu, MA Yulong. Effect of Vinyl Chloride Copolymer Elastomer on Modification and Properties of PVC [J]. China Plastics, 2020, 34(9): 16-21. |
| [12] | . Synergistic Effect of PLA/CaCO3 on Properties of Polypropylene Compounds [J]. China Plastics, 2019, 33(2): 29-34. |
| [13] | YU Haomiao, CHEN Yanming, WANG Liyan, WU Quancai. Study on Rheological Properties of PBT-based Copolyester Modified with 1,4-Cyclohexanedimethanol [J]. China Plastics, 2019, 33(11): 28-33. |
| [14] | SHENG Ping-Hou Xin Luo Yun DING. Study on Rheological Behavior of NEP Type Ultra Bright Polyester [J]. China Plastics, 2012, 26(11): 83-87 . |
| [15] | Ting CHEN QINGRONG QIAN XINSHU XIA JING XU XINPING LIU LIREN XIAO Baoquan HUANG Qinghua CHEN. Study on Phase Morphology and Rheological Behavior of PBT/ASA Blends [J]. China Plastics, 2012, 26(08): 55-59 . |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||