京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2024, Vol. 38 ›› Issue (5): 113-119.DOI: 10.19491/j.issn.1001-9278.2024.05.020
• Review • Previous Articles Next Articles
ZHANG Zheng(), LI Fangquan, LI Jie, LI Changjin, GUO Min, WANG Ying(
)
Received:
2023-07-22
Online:
2024-05-26
Published:
2024-05-20
CLC Number:
ZHANG Zheng, LI Fangquan, LI Jie, LI Changjin, GUO Min, WANG Ying. Research progress in polyamide and its applications for medical and sanitary materials[J]. China Plastics, 2024, 38(5): 113-119.
牌号 | 材质 | 结构 | 规格/mm | 应用 | 生产厂家 |
---|---|---|---|---|---|
Monosof® | PA6/PA66 | 单丝缝合线 | 0.01~>0.5 | 心血管、眼科和神经外科手术 | 美国COVIDIEN公司 |
Dafilon® | PA6/PA66 | 单丝缝合线 | 0.01~>0.5 | 皮肤闭合术、整形外科、显微外科和眼科手术 | 德国B. Braun公司 |
Dermalon® | PA6/PA66 | 单丝缝合线 | 0.07~0.4 | 心血管、眼科和神经外科手术 | 美国COVIDIEN公司 |
Nylene® | PA6 | 单丝缝合线 | 0.07~>0.5 | 牙科、普通外科、眼科、整形外科和美容外科手术 | 澳大利亚Dynek公司 |
CARDIONYL® | PA66 | 单丝缝合线 | 0.1或0.15 | 心血管、血管、眼科和神经外科手术 | 法国Peters Surgical公司 |
Teleflex® | PA66 | 单丝缝合线 | 0.04~>0.5 | 心血管、眼科和神经外科手术 | 美国Teleflex Medical公司 |
Riverlon® | PA6或PA66,有硅涂层 | 单丝缝合线 | 0.03或0.04 | 心血管、眼科和神经外科手术 | 美国Somni Scientific公司 |
Surulon® | PA | 单丝缝合线 | 0.07~>0.5 | 皮肤闭合术和整形外科手术 | 印度Suru International公司 |
SUPRAMID® | PA6/PA66 | 单丝/假单丝缝合线 | 0.07~0.7 | 皮肤闭合术和结扎手术 | 德国B. Braun公司 |
Ethilon® | PA6/PA66 | 单丝缝合线 | 0.01~>0.5 | 心血管、眼科和神经外科手术 | 美国Johnson & Johnson公司 |
Surgilon® | PA6/PA66 | 编织缝合线 | 0.07~>0.5 | 心血管、眼科和神经外科手术 | 美国COVIDIEN公司 |
Trelon® | PA66,有硅涂层 | 编织缝合线 | 0.07~>0.5 | 普通外科、眼科和结扎手术 | 德国B.Braun公司 |
Nurolon® | PA66 | 编织缝合线 | 0.07~0.4 | 心血管、眼科和神经外科手术 | 美国Johnson & Johnson公司 |
QuillTM SRS | PA | 双向带刺单丝缝合线 | 0.35或0.4 | 普通外科、妇科、泌尿外科和矫形外科手术 | 加拿大Angiotech Pharmaceuticals公司 |
SUPRAMID® EXTRA | PA6/PA66 | 电缆型结构缝合线 | 0.2~1.1 | 眼科、屈肌腱修复和兽医手术 | 美国S. Jackson公司 |
牌号 | 材质 | 结构 | 规格/mm | 应用 | 生产厂家 |
---|---|---|---|---|---|
Monosof® | PA6/PA66 | 单丝缝合线 | 0.01~>0.5 | 心血管、眼科和神经外科手术 | 美国COVIDIEN公司 |
Dafilon® | PA6/PA66 | 单丝缝合线 | 0.01~>0.5 | 皮肤闭合术、整形外科、显微外科和眼科手术 | 德国B. Braun公司 |
Dermalon® | PA6/PA66 | 单丝缝合线 | 0.07~0.4 | 心血管、眼科和神经外科手术 | 美国COVIDIEN公司 |
Nylene® | PA6 | 单丝缝合线 | 0.07~>0.5 | 牙科、普通外科、眼科、整形外科和美容外科手术 | 澳大利亚Dynek公司 |
CARDIONYL® | PA66 | 单丝缝合线 | 0.1或0.15 | 心血管、血管、眼科和神经外科手术 | 法国Peters Surgical公司 |
Teleflex® | PA66 | 单丝缝合线 | 0.04~>0.5 | 心血管、眼科和神经外科手术 | 美国Teleflex Medical公司 |
Riverlon® | PA6或PA66,有硅涂层 | 单丝缝合线 | 0.03或0.04 | 心血管、眼科和神经外科手术 | 美国Somni Scientific公司 |
Surulon® | PA | 单丝缝合线 | 0.07~>0.5 | 皮肤闭合术和整形外科手术 | 印度Suru International公司 |
SUPRAMID® | PA6/PA66 | 单丝/假单丝缝合线 | 0.07~0.7 | 皮肤闭合术和结扎手术 | 德国B. Braun公司 |
Ethilon® | PA6/PA66 | 单丝缝合线 | 0.01~>0.5 | 心血管、眼科和神经外科手术 | 美国Johnson & Johnson公司 |
Surgilon® | PA6/PA66 | 编织缝合线 | 0.07~>0.5 | 心血管、眼科和神经外科手术 | 美国COVIDIEN公司 |
Trelon® | PA66,有硅涂层 | 编织缝合线 | 0.07~>0.5 | 普通外科、眼科和结扎手术 | 德国B.Braun公司 |
Nurolon® | PA66 | 编织缝合线 | 0.07~0.4 | 心血管、眼科和神经外科手术 | 美国Johnson & Johnson公司 |
QuillTM SRS | PA | 双向带刺单丝缝合线 | 0.35或0.4 | 普通外科、妇科、泌尿外科和矫形外科手术 | 加拿大Angiotech Pharmaceuticals公司 |
SUPRAMID® EXTRA | PA6/PA66 | 电缆型结构缝合线 | 0.2~1.1 | 眼科、屈肌腱修复和兽医手术 | 美国S. Jackson公司 |
1 | Nimbekar A A, Bhatia P G, Deshmukh R R. Ammonia sensors manufactured by plasma enhanced grafting of conducting polymers on nylon-6 fabrics[J]. Synthetic Metals, 2021, 279:116840. |
2 | Shakiba M, Ghomi E R, Khosravi F, et al. Nylon—a material introduction and overview for biomedical applications[J]. Polymers for Advanced Technologies, 2021, 32 (9):3 368⁃3 383. |
3 | Spitz P H. Primed for success: the story of scientific design company[M]. Cham: Springer, 2019:33⁃34. |
4 | Turk S C, Kloosterman W P, Ninaber D K, et al. Metabolic engineering toward sustainable production of nylon-6[J]. ACS Synthetic Biology, 2016, 5 (1):65⁃73. |
5 | Ojijo V, Sinha R S. Processing nanocomposites based on engineering polymers: polyamides and polyimides[M]. In Processing of Polymer⁃Based Nanocomposites: Processing⁃Structure⁃Property⁃Performance Relationships. Cham: Springer, 2018:27⁃73. |
6 | Dynek Pty Ltd. Nylene® flyer[EB/OL]. [2023⁃08⁃03]. . |
7 | DSM. DSM expands new engineering materials portfolio to improve medical care[EB/OL]. (2022⁃04⁃08)[2023⁃08⁃03]. . |
8 | Valplast International Corp. Homepage[EB/OL]. [2023⁃08⁃03]. . |
9 | Lian J, Chen J, Luan S, et al. Organocatalytic copolymerization of cyclic lysine derivative and Ε⁃caprolactam toward antibacterial nylon-6 polymers[J]. ACS Macro Letters, 2021, 11 (1):46⁃52. |
10 | Zhang L, Wang W, Xie B, et al. PLGA nanoparticle rapamycin⁃or necrostatin-1⁃coated sutures inhibit inflammatory reactions after arterial closure in rats[J]. ACS Applied Bio Materials, 2022, 5 (4):1 501⁃1 507. |
11 | Pant H R, Kim C S. Electrospun gelatin/nylon‐6 composite nanofibers for biomedical applications[J]. Polymer International, 2013, 62 (7):1 008⁃1 013. |
12 | Jackson R J, Patrick P S, Page K, et al. Chemically treated 3D printed polymer scaffolds for biomineral formation[J]. ACS Omega, 2018, 3 (4):4 342⁃4 351. |
13 | Smith & Nephew Medical Ltd. Biobrane temporary biosynthetic skin dressing[EB/OL]. [2023⁃08⁃03]. . |
14 | Dennis C, Sethu S, Nayak S, et al. Suture materials—current and emerging trends[J]. Journal of Biomedical Materials Research Part A, 2016, 104 (6):1 544⁃1 559. |
15 | Afewerki S, Harb S V, Stocco T D, et al. Advanced technologies and polymer materials for surgical sutures[M]. In Advanced Technologies and Polymer Materials for Surgical Sutures. Amsterdam: Elsevier, 2023:95⁃128. |
16 | Byrne M, Aly A. The surgical suture[J]. Aesthetic Surgery Journal, 2019, 39 (S2):67⁃72. |
17 | Millbourn D, Cengiz Y, Israelsson L A. Effect of stitch length on wound complications after closure of midline incisions: a randomized controlled trial[J]. Archives of Surgery, 2009, 144(11): 1 056⁃1 059. |
18 | Fathullah M, Shayfull Z, Shuaib N, et al. Investigation on nylon PA 66 side arms using taguchi and anova analysis in reducing cost of producing urinary catheters[J]. International Review of Mechanical Engineering, 2011, 5 (7):1 278⁃1 286. |
19 | Sullivan M V, Dennison S R, Archontis G, et al. Toward rational design of selective molecularly imprinted polymers (MIPs) for proteins: computational and experimental studies of acrylamide based polymers for myoglobin[J]. The Journal of Physical Chemistry B, 2019, 123 (26):5 432⁃5 443. |
20 | Singh R, Kumar R, Ranjan N, et al. On the recyclability of polyamide for sustainable composite structures in civil engineering[J]. Composite Structures, 2018, 184:704⁃713. |
21 | Boman E, Paterson D, Huang J, et al. Treatment plan dosimetric impact after catheter stretch during multi⁃catheter interstitial breast brachytherapy[J]. Journal of Contemporary Brachytherapy, 2017, 9(5): 418⁃423. |
22 | Geith M A, Eckmann J D, Haspinger D C, et al. Experimental and mathematical characterization of coronary polyamide-12 balloon catheter membranes[J]. Plos One, 2020, 15(6): e0234340. |
23 | Vojdani M, Giti R. Polyamide as a denture base material: a literature review[J]. Journal of Dentistry, 2015, 16 (S1):1⁃9. |
24 | Lin J, Winkelman C, Worley S. Antimicrobial treatment of nylon[J]. Journal of Applied Polymer Science, 2001, 81 (4): 943⁃947. |
25 | Ryšánek P, Malý M, Čapková P, et al. Antibacterial modification of nylon-6 nanofibers: structure, properties and antibacterial activity[J]. Journal of Polymer Research, 2017, 24:1⁃10. |
26 | Haji A, Mousavi Shoushtari A, Mirafshar M. Natural dyeing and antibacterial activity of atmospheric‐plasma‐treated nylon 6 fabric[J]. Coloration Technology, 2014, 130 (1):37⁃42. |
27 | Mohammadkhodaei Z, Mokhtari J, Nouri M. Novel anti‐bacterial acid dyes derived from naphthalimide: synthesis, characterisation and evaluation of their technical properties on nylon 6[J]. Coloration Technology, 2010, 126 (2):81⁃85. |
28 | Shi Q, Vitchuli N, Nowak J, et al. One⁃step synthesis of silver nanoparticle⁃filled nylon 6 nanofibers and their antibacterial properties[J]. Journal of Materials Chemistry, 2011, 21 (28):10 330⁃10 335. |
29 | Pant H R, Bajgai M P, Nam K T, et al. Electrospun nylon-6 spider⁃net like nanofiber mat containing TiO2 nanoparticles: a multifunctional nanocomposite textile material[J]. Journal of Hazardous Materials, 2011, 185 (1):124⁃130. |
30 | Panthi G, Barakat N A, Al‐Deyab S S, et al. Interior synthesizing of ZnO nanoflakes inside nylon‐6 electrospun nanofibers[J]. Journal of Applied Polymer Science, 2013, 127 (3):2 025⁃2 032. |
31 | Haley R M, Qian V R, Learn G D, et al. Use of affinity allows anti‐inflammatory and anti‐microbial dual release that matches suture wound resolution[J]. Journal of Biomedical Materials Research Part A, 2019, 107 (7):1 434⁃1 442. |
32 | O'Neill B J, Hirpara K M, Kaar T K. Successful treatment of chronic osteomyelitis of the radius[J]. International Scholarly Research Notices, 2011, 2011:154878. |
33 | Rossi F, Zaltieri M, Sacchetti A, et al. Functionalization of nylon-6, 6 with polyetheramine improves wettability and antibacterial properties[J]. Industrial & Engineering Chemistry Research, 2021, 60 (29):10 666⁃10 673. |
34 | Boparai K, Singh R, Singh H. Comparison of tribological behaviour for nylon6⁃Al⁃Al2O3 and ABS parts fabricated by fused deposition modelling[J]. Virtual and Physical Prototyping, 2015, 10 (2):59⁃66. |
35 | Thomas D J. 3D printing durable patient specific knee implants[J]. Journal of Orthopaedics, 2017, 14 (1):182⁃183. |
36 | Al⁃Takhayneh O, Warren H, Panhuis M I H. 3D printing of surgical staples[J]. MRS Advances, 2022, 7:489⁃494. |
37 | Abdal⁃hay A, Sheikh F A, Lim J K. Air jet spinning of hydroxyapatite/poly (lactic acid) hybrid nanocomposite membrane mats for bone tissue engineering[J]. Colloids and Surfaces B: Biointerfaces, 2013, 102:635⁃643. |
38 | Ali M G, Mousa H M, Blaudez F, et al. Dual nanofiber scaffolds composed of polyurethane⁃gelatin/nylon 6⁃gelatin for bone tissue engineering[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 597:124817. |
39 | Abdal⁃hay A, Tijing L D, Lim J K. Characterization of the surface biocompatibility of an electrospun nylon 6/cap nanofiber scaffold using osteoblasts[J]. Chemical Engineering Journal, 2013, 215:57⁃64. |
40 | Olaniran O, Garcia C, Li W, et al. Amylase loading on a commercial nylon bandage intended for the control delivery of drug in treating localized wounds[J]. Materials Today: Proceedings, 2021, 38:499⁃502. |
41 | El⁃Newehy M H, Al⁃Deyab S S, Kenawy E R, et al. Nanospider technology for the production of nylon-6 nanofibers for biomedical applications[J]. Journal of Nanomaterials, 2011, 2011:626589. |
42 | Thakkar S, Misra M. Electrospun polymeric nanofibers: new horizons in drug delivery[J]. European Journal of Pharmaceutical Sciences, 2017, 107:148⁃167. |
43 | Lee J E, Park S, Park M, et al. Surgical suture assembled with polymeric drug⁃delivery sheet for sustained, local pain relief[J]. Acta Biomaterialia, 2013, 9 (9):8 318⁃8 327. |
44 | Parikh K S, Josyula A, Inoue T, et al. Nanofiber⁃coated, tacrolimus⁃eluting sutures inhibit post⁃operative neointimal hyperplasia in rats[J]. Journal of Controlled Release, 2023, 353:96⁃104. |
45 | Lesher A P, Curry R H, Evans J, et al. Effectiveness of biobrane for treatment of partial⁃thickness burns in children[J]. Journal of Pediatric Surgery, 2011, 46 (9):1 759⁃1 763. |
46 | Varkey M, Ding J, Tredget E E, et al. Advances in skin substitutes—potential of tissue engineered skin for facilitating anti⁃fibrotic healing[J]. Journal of Functional Biomaterials, 2015, 6 (3):547⁃563. |
47 | Keirouz A, Radacsi N, Ren Q, et al. Nylon-6/chitosan core/shell antimicrobial nanofibers for the prevention of mesh⁃associated surgical site infection[J]. Journal of Nanobiotechnology, 2020, 18:1⁃17. |
48 | Nur P F, Pınar T, Uğur P, et al. Fabrication of polyamide 6/honey/boric acid mats by electrohydrodynamic processes for wound healing applications[J]. Materials Today Communications, 2021, 29:102921. |
[1] | ZHANG Zhiqi, WANG Xiangdong, LIU Haiming, CHEN Shihong. Study on toughening modification and foaming behavior of biobased polyamide 56/polyamide 66 blends by polyamide elastomer [J]. China Plastics, 2024, 38(5): 55-60. |
[2] | PAN Bochao, LIN Chenxi, TANG Donglin. Preparation and properties of bio⁃based poly(urea⁃amide)s [J]. China Plastics, 2024, 38(1): 1-6. |
[3] | ZENG Yuan, LI Liang, LIU Wei, MA Jingjing, LIU Rangtong. Sodium alginate/polyacrylamide composite hydrogel toughened with chitosan [J]. China Plastics, 2024, 38(1): 42-48. |
[4] | SUN Yibo, LIU Yaning, LU Haofan, CHEN Shihong, WANG Xiangdong, WU Lili. Study on chain⁃extending reaction of PA66 and its supercritical CO2 microcellular foaming behavior [J]. China Plastics, 2023, 37(12): 41-46. |
[5] | ZHOU Yang, ZHAO Shikun, ZHAO Biao, LIU Huipeng, LI Jie, CAO Zhiwen, PAN Kai. Synthesis and nonisothermal crystallization kinetic study of semi⁃aromatic polyamide 6T/6I/6 [J]. China Plastics, 2022, 36(10): 15-22. |
[6] | DONG Yue, DONG Xiao, ZHU Dezhao, YANG Yanxiang, LUO Chen, LI Yang, LI Jinshan. An overview of development and application prospects of polyimide products [J]. China Plastics, 2022, 36(9): 85-95. |
[7] | CHEN Baiquan, ZHENG Youming, TIAN Jibo, XHANG Lei, WANG Jinsong, LIN Xiajie, DUAN Yapeng. Preparation and properties of polyamide flame⁃retardant composite reinforced with high content of glass fiber [J]. China Plastics, 2022, 36(8): 42-48. |
[8] | WEI Simiao, SHAO Lushan, XU Zhun, LIU Yanting, ZHAO Siheng, XU Bo. Flame⁃retardant performance of PA6 modified with hypophosphite/siloxane bi⁃functional compound and diethyl aluminum hypophosphite compound [J]. China Plastics, 2022, 36(7): 129-135. |
[9] | YANG Xiaolong, CHEN Wenjing, LI Yongqing, YAN Xiaokun, WANG Xiulei, XIE Pengcheng, MA Xiuqing. Research progress in polymer/graphene conductive composites [J]. China Plastics, 2022, 36(6): 165-173. |
[10] | WANG Shuai, ZHANG Yudi, YANG Fukai, XU Xinyu. Preparation and properties of polyimide/multi⁃walled carbon nanotubes composite foams [J]. China Plastics, 2022, 36(6): 39-45. |
[11] | WANG Jinye, TANG Bohu, YANG Lining, XIE Meng, GUO Zechao, YANG Guang. Study on multi⁃jet⁃fusion forming process of PA12 parts [J]. China Plastics, 2022, 36(6): 81-86. |
[12] | WEI Maoqiang. Development and discussion of agricultural plastic film [J]. China Plastics, 2022, 36(6): 92-99. |
[13] | CHEN Sheng, LIANG Yingchao, WU Fangjuan, FANG Hui, FAN Xinfeng, CHEN Hui, WANG Yonggang. Preparation and interfacial modification of polyamide 6/bidirectional warp⁃knitted glass fiber composites [J]. China Plastics, 2022, 36(5): 24-28. |
[14] | LI Suyuan, LIU Huipeng, GONG Shun, HUANG Guotao, LI Yucai, WU Xin, DENG Jianping, PAN Kai. Preparation and characterization of EVA foaming materials modified with thermoplastic polyamide elastomer [J]. China Plastics, 2022, 36(4): 6-14. |
[15] | YANG Zheng, WANG Zhenhua, LU Shike, LIU Yang, FANG Xiaoming, LI Jiantong, LIU Baoying, DING Tao. Synergistic effect of zinc borate and aluminum diethylphosphinate on flame retardancy of PA6 [J]. China Plastics, 2022, 36(1): 120-127. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||