京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2024, Vol. 38 ›› Issue (8): 125-131.DOI: 10.19491/j.issn.1001-9278.2024.08.020
• Review • Previous Articles
TANG Bo1, XIANG Lixue1, DAI Xumin1, WANG Erke1, JIANG Tao2, WANG Ying2, WU Xinfeng1,3()
Received:
2023-12-05
Online:
2024-08-26
Published:
2024-08-19
CLC Number:
TANG Bo, XIANG Lixue, DAI Xumin, WANG Erke, JIANG Tao, WANG Ying, WU Xinfeng. Research progress in diamond thermally conductive composite material[J]. China Plastics, 2024, 38(8): 125-131.
材料 | 填料含量 | 热导率/ W·mK-1 | 参考 文献 |
---|---|---|---|
环氧树脂/金刚石/ 氮化硼 | 金刚石(12 %);氮化硼(7 %) | 2.72 | [ |
碳化硅/金刚石 | 金刚石(26 %) | 298 | [ |
环氧树脂/纳米金刚石 | 纳米金刚石(4.63 %) | 1.27 | [ |
石蜡/金刚石泡沫 | 金刚石(1.3 %) | 6.7 | [ |
铝/金刚石 | 金刚石(4.6 %) | 315.7 | [ |
材料 | 填料含量 | 热导率/ W·mK-1 | 参考 文献 |
---|---|---|---|
环氧树脂/金刚石/ 氮化硼 | 金刚石(12 %);氮化硼(7 %) | 2.72 | [ |
碳化硅/金刚石 | 金刚石(26 %) | 298 | [ |
环氧树脂/纳米金刚石 | 纳米金刚石(4.63 %) | 1.27 | [ |
石蜡/金刚石泡沫 | 金刚石(1.3 %) | 6.7 | [ |
铝/金刚石 | 金刚石(4.6 %) | 315.7 | [ |
材料 | 填料含量 | 热导率/ W·mK-1 | 参考 文献 |
---|---|---|---|
碳化钛/金刚石/铜 | 金刚石(68.2 %) | 454 | [ |
铜/碳化硅包裹纳米金刚石 | 金刚石(2.72 %) | 46 | [ |
铜/400 μm金刚石 | 金刚石(60.6 %) | 847 | [ |
铜/230 μm金刚石 | 金刚石(49 %) | 600 | [ |
铜/氨基化微米金刚石 | 金刚石(20.3 %) | 595 | [ |
材料 | 填料含量 | 热导率/ W·mK-1 | 参考 文献 |
---|---|---|---|
碳化钛/金刚石/铜 | 金刚石(68.2 %) | 454 | [ |
铜/碳化硅包裹纳米金刚石 | 金刚石(2.72 %) | 46 | [ |
铜/400 μm金刚石 | 金刚石(60.6 %) | 847 | [ |
铜/230 μm金刚石 | 金刚石(49 %) | 600 | [ |
铜/氨基化微米金刚石 | 金刚石(20.3 %) | 595 | [ |
材料 | 填料含量 | 热导率/ W·mK-1 | 参考 文献 |
---|---|---|---|
Si3N4/金刚石 | 金刚石(50 %) | 202 | [ |
银⁃钛/金刚石 | 金刚石/银(60 %);钛(1.5 %) | 953 | [ |
铜/金刚石 | 金刚石(60 %) | 564 | [ |
铜/镀钨金刚石 | 金刚石(60 %) | 874 | [ |
材料 | 填料含量 | 热导率/ W·mK-1 | 参考 文献 |
---|---|---|---|
Si3N4/金刚石 | 金刚石(50 %) | 202 | [ |
银⁃钛/金刚石 | 金刚石/银(60 %);钛(1.5 %) | 953 | [ |
铜/金刚石 | 金刚石(60 %) | 564 | [ |
铜/镀钨金刚石 | 金刚石(60 %) | 874 | [ |
材料 | 填料含量 | 热导率/ W·mK-1 | 参考 文献 |
---|---|---|---|
铝/钨沉积金刚石 | 金刚石(55 %) | 622 | [ |
铜/钨沉积金刚石 | 金刚石(65 %) | 796 | [ |
铜/铜⁃碳化钼包裹金刚石 | 金刚石(60 %) | 351 | [ |
镓基/铬沉积金刚石 | 金刚石(47 %) | 113 | [ |
材料 | 填料含量 | 热导率/ W·mK-1 | 参考 文献 |
---|---|---|---|
铝/钨沉积金刚石 | 金刚石(55 %) | 622 | [ |
铜/钨沉积金刚石 | 金刚石(65 %) | 796 | [ |
铜/铜⁃碳化钼包裹金刚石 | 金刚石(60 %) | 351 | [ |
镓基/铬沉积金刚石 | 金刚石(47 %) | 113 | [ |
制备方法 | 优势 | 缺陷 | 性能 |
---|---|---|---|
共混法 | 制备简单;原材料选择灵活;生产成本相对较低 | 界面质量不易控制;无法实现定向结构 | 高含量填料才能达到较高热导率 |
构筑模板法 | 定向结构;高质量界面;适用于多种尺度 | 制备工艺复杂;工业化生产较难 | 较低含量填料能实现较高的热导率 |
电沉积技术 | 普适性较强;低温制备;成本较低 | 表面处理较高;有限的沉积速率;附着力较差 | 厚沉积涂层可以实现高热导率 |
烧结技术 | 成型灵活且步骤简单 | 高成本;能源消耗较大;会引发颗粒的变形 | 高稳定性;高含量填料达到较高热导率 |
磁控溅射技术 | 均匀沉积;适用于多种基体 | 基材处理要求高;设备复杂度高;成本较高;膜层可能会产生微裂缝 | 附着力较好;厚沉积涂层可以实现高热导率 |
化学气相沉积技术 | 高纯度;均匀性好;可实现复杂结构制备 | 设备复杂;成本较高 | 附着力较好;热稳定性好;厚沉积涂层可以实现高热导率 |
制备方法 | 优势 | 缺陷 | 性能 |
---|---|---|---|
共混法 | 制备简单;原材料选择灵活;生产成本相对较低 | 界面质量不易控制;无法实现定向结构 | 高含量填料才能达到较高热导率 |
构筑模板法 | 定向结构;高质量界面;适用于多种尺度 | 制备工艺复杂;工业化生产较难 | 较低含量填料能实现较高的热导率 |
电沉积技术 | 普适性较强;低温制备;成本较低 | 表面处理较高;有限的沉积速率;附着力较差 | 厚沉积涂层可以实现高热导率 |
烧结技术 | 成型灵活且步骤简单 | 高成本;能源消耗较大;会引发颗粒的变形 | 高稳定性;高含量填料达到较高热导率 |
磁控溅射技术 | 均匀沉积;适用于多种基体 | 基材处理要求高;设备复杂度高;成本较高;膜层可能会产生微裂缝 | 附着力较好;厚沉积涂层可以实现高热导率 |
化学气相沉积技术 | 高纯度;均匀性好;可实现复杂结构制备 | 设备复杂;成本较高 | 附着力较好;热稳定性好;厚沉积涂层可以实现高热导率 |
1 | Chen Hongyun, Xiang Wang, Dong Xiaoyan, et al. Adjusting the energy⁃storage characteristics of 0.95NaNbO3⁃0.05Bi(Mg0.5Sn0.5)O3 ceramics by doping linear perovskite materials[J]. ACS Applied Materials & Interfaces, 2022, 14 (22):25 609⁃25 619. |
2 | 肖琰,魏伯荣,杨海涛,等.导热高分子材料的研究开发现状[J].中国塑料,2005(04):12⁃16. |
XIAO Y, WEI B R, YANG H T,et al. Current status of research and development of thermally conductive polymer materials[J]. China Plastics, 2005(04):12⁃16. | |
3 | Santosh Kumar Sahoo, Mihir Kumar Das, Rath Prasenjit. Application of TCE⁃PCM based heat sinks for cooling of electronic components: A review[J]. Renewable and Sustainable Energy Reviews, 2016, 59:550⁃582. |
4 | Zhou Lianggong, Liu Jianan, Ding Ruiqing, et al. A review of diamond interfacial modification and its effect on the properties of diamond/Cu matrix composites[J]. Surfaces and Interfaces, 2023, 40:103143. |
5 | Zhu P, Wang P, Shao P, et al. Research progress in interface modification and thermal conduction behavior of diamond/metal composites[J]. Int J Miner Metall Mater, 2022, 29:200⁃211. |
6 | Li Zhang, Hua Deng, Qiang Fu. Recent progress on thermal conductive and electrical insulating polymer composites[J]. Composites Communications, 2018, 8:74⁃82. |
7 | Bhoi N K, Singh H, Pratap S. Developments in the aluminum metal matrix composites reinforced by micro/nano particles⁃A review[J]. Journal of Composite Materials, 2020, 54(6):813⁃833. |
8 | Ning Li, Zhang Yongjian, Yang Zhang, et al. Realizing ultrahigh thermal conductivity in bimodal⁃diamond/Al composites via interface engineering[J]. Materials Today Physics, 2022, 28:100901. |
9 | Liu Weina, Naydenov Boris, Chakrabortty Sabyasachi, et al. Fluorescent nanodiamond⁃gold hybrid particles for multimodal optical and electron microscopy cellular imaging[J]. Nano Letters, 2016, 16(10) :6 236⁃6 244. |
10 | Inyushkin A V, Taldenkov A N, Yelisseyev A P, et al. Thermal conductivity of type⁃Ib HPHT synthetic diamond irradiated with electrons[J]. Diamond and Related Materials, 2023, 139:110302. |
11 | Liu Yiling, Lin Qiu, Liu Jinlong, et al. Enhancing thermal transport across diamond/graphene heterostructure interface[J]. International Journal of Heat and Mass Transfer, 2023, 209:124123. |
12 | Xie Zhongnan, Hong Guo, Zhen Zhang, et al. Thermal expansion behaviour and dimensional stability of Diamond/Cu composites with different diamond content[J]. Journal of Alloys and Compounds, 2019, 797:122⁃130. |
13 | Zhao Y, Yan F, Liu X, et al. Thermal transport properties of diamond phonons by electric field[[J]. Nanomaterials, 2022, 12(19):3399. |
14 | Dong Huicong, Wen Bin, Yuwen Zhang, et al. Thermal conductivity of diamond/SiC nano⁃polycrystalline composites and phonon scattering at interfaces[J]. ACS Omega, 2017, 2 (5) :2 344⁃2 350. |
15 | 杨碧环,李东皓,祝捷,等.缺陷增强铜/金刚石界面热导的分子动力学研究[J].工程热物理学报,2023,44(03):781⁃786. |
YANG B H, LI D H, ZHU J, et al. Molecular dynamics study of thermal conductivity at defect⁃enhanced copper/diamond interfaces[J]. Journal of Engineering Thermophysics, 2023, 44(03):781⁃786. | |
16 | Cao Zhenya, Chen Shuai, Jiang Zhizhong, et al. Effect of Si⁃coated diamond on the relative density and thermal conductivity of diamond/W composites prepared by SPS[J]. Vacuum, 2023, 209:111728. |
17 | Jia S Q, Yang F. High thermal conductive copper/diamond composites: state of the art[J]. J Mater Sci, 2021, 56:2 241⁃2 274. |
18 | Zhao B, Jiang G. Thermal conductive epoxy enhanced by nanodiamond⁃coated carbon nanotubes[J]. Electron Mater Lett, 2017, 13:512⁃517. |
19 | Zeng Chengzong, Ma Chaofan, Shen Jun. High thermal conductivity in diamond induced carbon fiber⁃liquid metal mixtures[J]. Composites Part B: Engineering, 2022, 238:109902. |
20 | Du Xinxin, Yang Wulin, Zhu Jiajun, et al. Aligning diamond particles inside BN honeycomb for significantly improving thermal conductivity of epoxy composite[J]. Composites Science and Technology, 2022, 222:109370. |
21 | Liu Pengfei, He Xinbo, Qu Xuanhui. Preparation of high thermal conductivity diamond/SiC composites with 3D connected diamond at low volume fraction[J]. Composites Communications, 2023, 39:101526. |
22 | Yoshitomi Tomohiro, Matsumoto Takuya, Nishino Takashi. Highly thermally conductive nanocomposites prepared by the ice⁃templating alignment of nanodiamonds in the thickness direction[J]. ACS Applied Polymer Materials, 2023, 5(10) :8 349⁃8 358. |
23 | Long Zhang, Zhou Kechao, Wei Quiping, et al. Thermal conductivity enhancement of phase change materials with 3D porous diamond foam for thermal energy storage[J].Applied Energy, 2019, 233:208⁃219. |
24 | Long Zhang, Wei Qiuping, An Junjie, et al. Construction of 3D interconnected diamond networks in Al⁃matrix composite for high⁃efficiency thermal management[J]. Chemical Engineering Journal, 2020, 380:122551. |
25 | Jun Cho Hai, Kim Young⁃June, Erb Uwe. Thermal conductivity of copper⁃diamond composite materials produced by electrodeposition and the effect of TiC coatings on diamond particles[J]. Composites Part B: Engineering, 2018, 155:197⁃203. |
26 | Hagio Takeshi, Park Jae⁃Hyeok, Naruse Yuto, et al. Electrodeposition of nano⁃diamond/copper composite platings: Improved interfacial adhesion between diamond and copper via formation of silicon carbide on diamond surface[J]. Surface and Coatings Technology, 2020, 403: 126322. |
27 | Wu Yongpeng, Luo Jiangbo, Yan Wang, et al. Critical effect and enhanced thermal conductivity of Cu⁃diamond composites reinforced with various diamond prepared by composite electroplating[J]. Ceramics International, 2019, 10(45) :13 225⁃13 234. |
28 | Arai S, Ueda M. Fabrication of high thermal conductivity copper/diamond composites by electrodeposition under potentiostatic conditions[J]. J Appl Electrochem, 2020, 50:631⁃638. |
29 | Ishida Naoya, Kato Kazuki, Suzuki Norihiro, et al. Preparation of amino group functionalized diamond using photocatalyst and thermal conductivity of diamond/copper composite by electroplating[J]. Diamond and Related Materials, 2021, 118:108509. |
30 | Wu Dandan, Wang Chengyong, Hu Xiaoyue, et al. Fabrication and characterization of highly thermal conductive Si3N4/diamond composite materials[J]. Materials & Design, 2023, 225:111482. |
31 | Jhong Yu⁃Siang, Tseng Hsiao⁃Ting, Lin Su⁃Jien. Diamond/Ag⁃Ti composites with high thermal conductivity and excellent thermal cycling performance fabricated by pressureless sintering[J]. Journal of Alloys and Compounds, 2019, 801:589⁃595. |
32 | Lu Kaijie, Wang Chunju, Wang Changrui, et al. Study of the hot⁃pressing sintering process of diamond/copper composites and their thermal conductivity[J]. Journal of Alloys and Compounds, 2023, 960:170608. |
33 | Wang X, He X, Xu Z, et al. Preparation of W⁃plated diamond and improvement of thermal conductivity of diamond⁃WC⁃Cu composite[J]. Metals, 2021, 11(3):437. |
34 | Liu Xiaoyan, Sun Fangyuan, Wang Luhua, et al. The role of Cr interlayer in determining interfacial thermal conductance between Cu and diamond[J]. Applied Surface Science, 2020, 515:146046. |
35 | Yang Wenshu, Chen Guoqin, Wang Pingping, et al. Enhanced thermal conductivity in Diamond/Aluminum composites with tungsten coatings on diamond particles prepared by magnetron sputtering method[J]. Journal of Alloys and Compounds, 2017, 726:623⁃631. |
36 | Jia Jinhao, Bai Shuxin, Xiong Degan, et al. Enhanced thermal conductivity in diamond/copper composites with tungsten coatings on diamond particles prepared by magnetron sputtering method[J]. Materials Chemistry and Physics, 2020, 252:123422. |
37 | Liu Ruxia, Luo Guoqiang, Yuan Li, et al. Microstructure and thermal properties of diamond/copper composites with Mo2C in⁃situ nano⁃coating[J]. Surface and Coatings Technology, 2019, 360:376⁃381. |
38 | Wei S, Yu Z F, Zhou L J, et al. Investigation on enhancing the thermal conductance of gallium⁃based thermal interface materials using chromium⁃coated diamond particles[J]. J Mater Sci: Mater Electron, 2019, 30:7 194⁃7 120. |
39 | Jiao Zengkai, Li Songbo, Zhou Kechao, et al. Application of multi⁃scale pore regulation for high thermal conductivity foam reinforcements in energy storage[J]. Composites Part A: Applied Science and Manufacturing, 2022, 157:106938. |
40 | Ye Wentao, Wei Qiuping, Long Zhang, et al. Macroporous diamond foam: A novel design of 3D interconnected heat conduction network for thermal management[J]. Materials & Design, 2018, 156:32⁃41. |
[1] | CAO Shuai, JIANG Tao, LIU Xiong, WANG Ying, LI Wenge, WU Xinfeng. Research progress in preparation of thermal conductive composites with MXene [J]. China Plastics, 2024, 38(6): 139-144. |
[2] | GAO Wei, XIONG Changyi, HAN Fei, KONG Nizao, YAN Yuanwei. Study on modification and design of thermal conductive and microwave absorbing dual⁃functional powders [J]. China Plastics, 2024, 38(6): 19-24. |
[3] | ZHANG Jun, XI Wang, QIAN Lijun, ZHOU Fengshuai, QIU Yong, WANG Jingyu, ZHANG Zhipeng. Preparation and characterizations of flame⁃retardant and heat⁃conductive polycarbonate⁃based composites with boron nitride and phosphaphenanthrene [J]. China Plastics, 2024, 38(3): 31-37. |
[4] | JI Jianchao, YAN Yue, CHEN Yuhong, HA Enhua, HAO Changshan, LEI Pei. Optical properties and microstructures of TiO2 thin film deposited on PMMA at low temperature [J]. China Plastics, 2024, 38(3): 7-12. |
[5] | XIANG Lixue, TANG Bo, ZHOU Gang, DAI Xumin, WANG Erke, JIANG Tao, WU Xinfeng. A review of application research on 3D printing technology in high thermal conductivity engineering plastics [J]. China Plastics, 2023, 37(9): 125-132. |
[6] | CHEN Hui, SUN Lingsheng, QIAN Weidong, TAN Bo. Study on properties of PES/CF/CB composites through selective laser sintering [J]. China Plastics, 2023, 37(9): 14-18. |
[7] | . Study on synergistic reinforcement of intrinsically conductive epoxy resin matrix composites with short?cut/continuous carbon fibers [J]. , 2023, 37(4): 1-10. |
[8] | CHEN Hui, QIAN Weidong, SUN Lingsheng, TAN Bo. Effect of nano⁃SiO2 content on surface quality and mechanical properties of PES⁃based laser sintered parts [J]. China Plastics, 2023, 37(11): 10-14. |
[9] | ZHANG Hengyuan, LIU Tao, ZHANG Shijun, LIU Jianye. Study on processing⁃structure⁃properties of selective laser sintered of polypropylene [J]. China Plastics, 2023, 37(10): 50-55. |
[10] | ZHANG Qiang, ZHANG Jian, LIN Lin, LIU Jing, WANG Tianhe. Research progress in heat transfer enhancement measures for wall materials of microencapsulated phase change materials [J]. China Plastics, 2022, 36(7): 187-196. |
[11] | HE Mingfeng, WANG Ke, WANG Qiyang, YANG Xiao, GUO Hong, HU Boyang, LI Baoan. Study on polyvinylidene fluoride/matrix⁃like groups⁃modified graphene composites with high thermal conductivity [J]. China Plastics, 2022, 36(2): 41-48. |
[12] | WANG Qiyang, YANG Xiao, CHEN Jihuan, HE Yuexing, YANG Dongmei, HU Boyang, GUO Hong, LI Baoan. Study on double⁃segregated polyethylene/graphene composites with high thermal conductivity [J]. China Plastics, 2022, 36(1): 32-41. |
[13] | ZHANG Zhouya, BAI Shijian, ZHANG Yuxia, ZHOU Hongfu, GONG Fangfang, TANG Xueguli, WANG Bin. Research Progress in Factors Affecting Thermal Conductivity of Polymeric Materials [J]. China Plastics, 2021, 35(9): 156-165. |
[14] | WU Chaoting, CHEN Huayan, ZHANG Wenxin, LYU Xiaolong. Study on Thermal Conductivity of Carbon Nanotube Dispersion Strengthened PVDF Composite Film [J]. China Plastics, 2021, 35(7): 25-31. |
[15] | YAO Junlong, WANG Xinrui, HU Li, JIANG Xueliang, YOU Feng, ZHOU Min. Tartaric Acid Modified BT to Enhance the Thermal Conductivity and Dielectric Properties of PP Composites [J]. China Plastics, 2021, 35(4): 30-34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||