
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2021, Vol. 35 ›› Issue (10): 126-136.DOI: 10.19491/j.issn.1001-9278.2021.10.021
收稿日期:
2021-04-07
出版日期:
2021-10-26
发布日期:
2021-11-19
作者简介:
石文天(1980—),男,教授,从事微细加工和3D打印技术研究,基金资助:
SHI Wentian1(), SUN Wenlong1, YUAN Meixia2, LIU Yude1
Received:
2021-04-07
Online:
2021-10-26
Published:
2021-11-19
摘要:
综述了纤维增强复合材料(FRP)加工专用刀具的研究进展,详细介绍了刀具材料、刀具表面涂层、刀具专用结构和加工辅助工艺的研究现状,列举了近年来国内外典型的FRP专用加工刀具,并简要介绍了刀具路径及工艺参数优化方法;最后,总结并提出了FRP专用加工刀具的总体设计原则和思路方法。
中图分类号:
石文天, 孙文龙, 袁美霞, 刘玉德. 纤维增强复合材料加工刀具研究进展[J]. 中国塑料, 2021, 35(10): 126-136.
SHI Wentian, SUN Wenlong, YUAN Meixia, LIU Yude. Research Progress in Cutting Tools of Fiber⁃reinforced Plastic Materials[J]. China Plastics, 2021, 35(10): 126-136.
涂层类型 | 涂层硬度/HV | 涂层厚度/μm | 摩擦因数 | 耐热温度/℃ | 特点及应用范围 |
---|---|---|---|---|---|
氮化钛(TiN) | 2 300 | 2~3 | 0.6 | 600 | 高硬、耐磨、耐氧化 |
碳氮化钛(TiCN) | 2 800 | 2~3 | 0.3 | 500 | 低内应力,高韧性、良好的润滑性;适合低摩擦系数和高硬度要求的加工环境 |
氮铝钛(TiAlN) | 3 100 | 2~3 | 0.3 | 750 | 高热硬性、高化学稳定性、抗氧化、耐磨性;适合干加工场合 |
氮化铬(CrN) | 1 800 | 2~3 | 0.2 | 700 | 强润滑性、耐高温 |
类金刚石(DLC) | 2 500 | 1~2 | 0.1~0.2 | 300 | 优良的耐磨、耐腐蚀性能,低摩擦因数,与基体结合力强。通常以TiAlN为基体配合使用 |
多层复合高铝(AHNO) | 3 100 | 2~3 | 0.3 | 800 | 高硬、高耐磨、低摩擦因数,高温下稳定性强,适合高速加工 |
涂层类型 | 涂层硬度/HV | 涂层厚度/μm | 摩擦因数 | 耐热温度/℃ | 特点及应用范围 |
---|---|---|---|---|---|
氮化钛(TiN) | 2 300 | 2~3 | 0.6 | 600 | 高硬、耐磨、耐氧化 |
碳氮化钛(TiCN) | 2 800 | 2~3 | 0.3 | 500 | 低内应力,高韧性、良好的润滑性;适合低摩擦系数和高硬度要求的加工环境 |
氮铝钛(TiAlN) | 3 100 | 2~3 | 0.3 | 750 | 高热硬性、高化学稳定性、抗氧化、耐磨性;适合干加工场合 |
氮化铬(CrN) | 1 800 | 2~3 | 0.2 | 700 | 强润滑性、耐高温 |
类金刚石(DLC) | 2 500 | 1~2 | 0.1~0.2 | 300 | 优良的耐磨、耐腐蚀性能,低摩擦因数,与基体结合力强。通常以TiAlN为基体配合使用 |
多层复合高铝(AHNO) | 3 100 | 2~3 | 0.3 | 800 | 高硬、高耐磨、低摩擦因数,高温下稳定性强,适合高速加工 |
研究机构 | 刀具类型 | 特征结构及加工能力 | 典型刀具图 |
---|---|---|---|
大阪府立工业大学[ | 人字形立铣刀 | 人字形40°双螺旋角刀具减少了加工振动,适宜于加工扁平零件尤其是玻璃织物层和较薄材料 | ![]() |
SECO | 整体硬质合金鱼鳞铣刀 | 对称交错的螺旋槽切削刃锋利,可极大降低加工阻力,易于实现高速加工,并且可有效延长铣刀使用寿命 | ![]() |
SANDIVIK | 锯齿立铣刀 | 40°螺旋角专利槽型具有双重切削作用,可减少分层和振动;既可干切也可湿切 | ![]() |
金鹭特种合金有限公司[ | 金刚石涂层硬质合金菱齿立铣刀 | 螺旋角不同的左右切削刃,同时参加切削,能有效减少毛刺、撕裂等加工缺陷,大幅延长刀具寿命 | ![]() |
北京工商大学 | 双刃压迫式立铣刀 | 专门设计用于加工层压材料,选用左右螺旋两种形式切削刃,均包含两个分离的锯齿状切削刃,在高效铣削基质材料并剪切纤维的同时,可有效避免刀具过快磨损 | ![]() |
北京卫星制造厂[ | 芳纶纤维专用立铣刀 | AFRP铣削加工专用刀具,特殊排屑槽可很好地切断纤维,避免材料出现分层毛刺以及脱丝和拉毛现象 | ![]() |
小螺旋角铣刀 | 10°螺旋角,铣削刃具有较小的螺旋角,能够减少铣削过程的轴向力,可有效控制材料分层趋势 | ![]() | |
SANDVIK | PCD复合钻头 | 烧结PCD钻头,118°和135°两种钻尖,直径范围3~16 mm;专为要求苛刻的CFRP加工而设计,可有效减少毛刺和纤维劈裂风险 | ![]() |
SANDVIK | 硬质合金金刚石涂层钻头 | 双顶角带金刚石涂层的硬质合金钻尖,切削刃异常锋利,钻头直径范围4~12.7 mm;可降低劈裂和分层的风险 | ![]() |
MITSUBISHI | 化学气相沉积金刚石涂层钻头 | 采用锋利的波形刃及多层微粒化学气相沉积金刚石涂层,兼备优异的耐磨性能与平滑性 | ![]() |
集美大学[ | 涂层W型钻头 | “先推后切”设计理念,W型钻头轴向力大大减小,有效避免了撕裂、分层的情况 | ![]() |
大连理工大学[ | 金刚石磨具 | “以磨代钻”理念,加工面积大大减小,可有效降低切削力,磨粒负前角加工 | ![]() |
研究机构 | 刀具类型 | 特征结构及加工能力 | 典型刀具图 |
---|---|---|---|
大阪府立工业大学[ | 人字形立铣刀 | 人字形40°双螺旋角刀具减少了加工振动,适宜于加工扁平零件尤其是玻璃织物层和较薄材料 | ![]() |
SECO | 整体硬质合金鱼鳞铣刀 | 对称交错的螺旋槽切削刃锋利,可极大降低加工阻力,易于实现高速加工,并且可有效延长铣刀使用寿命 | ![]() |
SANDIVIK | 锯齿立铣刀 | 40°螺旋角专利槽型具有双重切削作用,可减少分层和振动;既可干切也可湿切 | ![]() |
金鹭特种合金有限公司[ | 金刚石涂层硬质合金菱齿立铣刀 | 螺旋角不同的左右切削刃,同时参加切削,能有效减少毛刺、撕裂等加工缺陷,大幅延长刀具寿命 | ![]() |
北京工商大学 | 双刃压迫式立铣刀 | 专门设计用于加工层压材料,选用左右螺旋两种形式切削刃,均包含两个分离的锯齿状切削刃,在高效铣削基质材料并剪切纤维的同时,可有效避免刀具过快磨损 | ![]() |
北京卫星制造厂[ | 芳纶纤维专用立铣刀 | AFRP铣削加工专用刀具,特殊排屑槽可很好地切断纤维,避免材料出现分层毛刺以及脱丝和拉毛现象 | ![]() |
小螺旋角铣刀 | 10°螺旋角,铣削刃具有较小的螺旋角,能够减少铣削过程的轴向力,可有效控制材料分层趋势 | ![]() | |
SANDVIK | PCD复合钻头 | 烧结PCD钻头,118°和135°两种钻尖,直径范围3~16 mm;专为要求苛刻的CFRP加工而设计,可有效减少毛刺和纤维劈裂风险 | ![]() |
SANDVIK | 硬质合金金刚石涂层钻头 | 双顶角带金刚石涂层的硬质合金钻尖,切削刃异常锋利,钻头直径范围4~12.7 mm;可降低劈裂和分层的风险 | ![]() |
MITSUBISHI | 化学气相沉积金刚石涂层钻头 | 采用锋利的波形刃及多层微粒化学气相沉积金刚石涂层,兼备优异的耐磨性能与平滑性 | ![]() |
集美大学[ | 涂层W型钻头 | “先推后切”设计理念,W型钻头轴向力大大减小,有效避免了撕裂、分层的情况 | ![]() |
大连理工大学[ | 金刚石磨具 | “以磨代钻”理念,加工面积大大减小,可有效降低切削力,磨粒负前角加工 | ![]() |
1 | 石文天,侯岩军,刘玉德,等 . 微切削毛刺形成机理及研究进展综述[J]. 中国机械工程,2019, 30(23): 2 809⁃2 819. |
SHI W T , HOU Y J , LIU Y D , et al . Overview on Formation Mechanism and Research Progresses of Burrs in Micro Cutting[J]. China Mechanical Engineering.2019,30(23): 2 809⁃2 819. | |
2 | 史振宇, 崔 鹏, 李 鑫, 等 .基于纤维增强复合材料的超声振动辅助加工技术综述[J]. 表面技术, 2019, 48(1): 305⁃319. |
SHI Z Y , CUI P , LI X ,et al . Overview of Ultrasonic Vibration Assisted Machining Technology on Fiber Reinforced Composites[J]. Surface Technology, 2019, 48(1): 305⁃319. | |
3 | KUMAR D , SINGH K K . An Approach Towards Damage Free Machining of CFRP and GFRP Composite Material: A Review[J]. Advanced Composite Materials, 2015, 24(1): 49⁃63. |
4 | PAN Y , JI S , TAN D , et al . Cavitation⁃based Soft Abrasive Flow Processing Method[J]. International Journal of Advanced Manufacturing Technology, 2020,109:9⁃12. |
5 | MKADDEM A , SOUSSIA A B , MANSORI M E . Wear Resistance of CVD and PVD Multilayer Coatings When Dry Cutting Fiber Reinforced Polymers (FRP)[J]. Wear, 2013, 302(1/2): 946⁃954. |
6 | JIA Z , FU R , NIU B , et al . Novel Drill Structure for Damage Reduction in Drilling CFRP Composites[J]. International Journal of Machine Tools and Manufacture, 2016, 110: 55⁃65 |
7 | JIA Z , SU Y , NIU B , et al . The Interaction Between the Cutting Force and Induced Sub⁃surface Damage in Machining of Carbon Fiber⁃reinforced Plastics[J]. Journal of Reinforced Plastics and Composites, 2016, 35(9): 712⁃726. |
8 | SCHULZE V , BECKE C , WEIDENMANN K , et al . Machining Strategies for Hole Making in Composites with Minimal Workpiece Damage by Directing the Process Forces Inwards[J]. Journal of Materials Processing Tech, 2011, 211(3): 329⁃338. |
9 | 杨小璠, 李友生, 鄢国洪,等 .新型刀具钻削碳纤维复合材料的可行性研究[J]. 制造技术与机床, 2014(12): 165⁃167. |
YANG X P , LI Y S , YAN G H , et al . Research on Drilling Feasibility of New⁃type Cutting Tool for Carbon Fiber⁃reinforced Plastics[J]. Manufacturing Technology & Machine Tool, 2014(12): 165⁃167. | |
10 | 贾振元, 肖 军, 湛利华, 等 .大型航空复合材料承力构件制造关键技术[J]. 中国基础科学, 2019, 21(2): 20⁃27. |
JIA Z Y , XIAO J , ZHAN L H , et al . Research of Large Aviation and Loading⁃bearing Composite Components Manufacturing[J]. China Basic Science, 2019, 21(2): 20⁃27. | |
11 | 刘献礼, 计 伟, 范梦超, 等 .基于特征的刀具“形⁃性⁃用”一体化设计方法[J]. 机械工程学报, 2016, 52(11): 146⁃153. |
LIU X L , JI W , FAN M C , et al . Feature Based Cutting Tool “Shape⁃Performance⁃Application” Integrating Design Approach[J]. Journal of Mechanical Engineering, 2016, 52(11): 146⁃153. | |
12 | 石文天, 聂尔杰, 张加波, 等 .芳纶纤维复合材料切削性能与刀具选用[J]. 中国塑料, 2014(5): 81⁃84. |
SHI W T , NIE E J , ZHANG J B , et al . Research on Cutting Performance and Tool Selection of Aramid Fiber Composites[J]. China Plastics, 2014(5): 81⁃84. | |
13 | 魏莹莹 . 碳纤维增强复合材料孔加工缺陷产生机理、评价与工艺优化研究[D]. 上海:上海交通大学, 2016. |
14 | TETI R . Machining of Composite Materials[J]. CIRP Annals⁃Manufacturing Technology, 2002, 51(2): 611⁃634. |
15 | EL⁃HOFY M H , SOO S L, ASPINWALL D K , et al . Factors Affecting Workpiece Surface Integrity in Slotting of CFRP[J]. Procedia Engineering, 2011, 19(1): 94⁃99. |
16 | ALEXANDRE M , BENOIT F , JOËL R . Characterisation of Friction Properties Between A Laminated Carbon Fibres Reinforced Polymer and A Monocrystalline Diamond under Dry or Lubricated Conditions[J]. Tribology International, 2010, 43(9): 1 665⁃1 673. |
17 | KARPAT Y , DEĞER B , BAHTIYAR O . Experimental Evaluation of Polycrystalline Diamond Tool Geometries while Drilling Carbon Fiber⁃reinforced Plastics[J]. The International Journal of Advanced Manufacturing Technology, 2014, 71(5/8): 1 295⁃1 307. |
18 | XU J Y , AN Q L , CHEN M . A Comparative Evaluation of Polycrystalline Diamond Drills in Drilling High⁃strength T800S/250F CFRP⁃ScienceDirect[J]. Composite Structures, 2014, 117(1): 71⁃82. |
19 | MKADDEM A , SOUSSIA A B , MANSORI M E . Wear Resistance of CVD and PVD Multilayer Coatings When Dry Cutting Fiber Reinforced Polymers (FRP)[J]. Wear, 2013, 302(1/2): 946⁃954. |
20 | WANG C , CHENG K , RAKOWSKI R , et al . Comparative Studies on The Effect of Pilot Drillings with Application to High⁃speed Drilling of Carbon Fibre Reinforced Plastic(CFRP) Composites[J]. International Journal of Advanced Manufacturing Technology, 2017, 89(9/12): 3 243⁃3 255. |
21 | JAWAHIR I S , AVAN LUTTERVELT C . Recent Developments in Chip Control Research and Applications[J]. CIRP Annals⁃Manufacturing Technology, 1993, 42(2): 659⁃693. |
22 | TASHIRO T , FUJIWARA J , ASAHI N . Cutting Characteristics in End⁃Milling of CFRP with Diamond⁃Coated Herringbone Tool[J]. International Journal of Automation Technology, 2016, 10(3): 356⁃363. |
23 | 鄢国洪 . 菱齿立铣刀铣削碳纤维复合材料的切削性能研究[J]. 金属加工(冷加工), 2015(11): 64⁃66. |
YAN G H . Research on Cutting Performance of Diamond Tooth End Mills for Milling Carbon Fiber Composite Materials[J]. Metal Working(Metal Cutting), 2015(11): 64⁃66. | |
24 | 刘汉良, 张加波, 王 震, 等 . 碳纤维与芳纶纤维复合材料机械加工刀具选用[J]. 宇航材料工艺, 2013, 43(4): 95⁃98. |
LIU H L , ZHANG J B , WANG Z , et al . Cutting Tool Selection in CFRP and AFRP Machining[J]. Aerospace Materials & Technology, 2013, 43(4): 95⁃98. | |
25 | 单晨伟,吕晓波 .碳纤维增强复合材料铣削和钻孔技术研究进展[J]. 航空制造技术, 2016(15): 34⁃41. |
SHAN C W , LV X B . Research Progress on Milling and Drilling of Carbon Fiber Reinforced Composites[J]. Aeronautical Manufacturing Technology, 2016(15): 34⁃41. | |
26 | 鲍永杰, 高 航, 董 波, 等 . C/E复合材料“以磨代钻”制孔工艺[J]. 宇航材料工艺, 2010, 40(4): 47⁃49. |
BAO Y J , GAO H , DONG B , et al . Drilling Process of C/E Composites With Grinding Tool[J]. Aerospace Materials & Technology, 2010, 40(4): 47⁃49. | |
27 | NING F , WANG H , HU Y , et al . Rotary Ultrasonic Surface Machining of CFRP Composites: A Comparison with Conventional Surface Grinding[J]. Procedia Manufacturing, 2017(10): 557⁃567. |
28 | GENG D , LU Z , YAO G , et al . Cutting Temperature and Resulting Influence on Machining Performance in Rotary Ultrasonic Elliptical Machining of Thick CFRP[J]. International Journal of Machine Tools and Manufacture, 2017, 123: 160⁃170. |
29 | GENG D , ZHANG D , XU Y , et al . Rotary Ultrasonic Elliptical Machining for Side Milling of CFRP: Tool performance and surface integrity[J]. Ultrasonics, 2015, 59: 128⁃137. |
30 | 石文天, 刘玉德, 张永安, 等 .芳纶纤维复合材料切削加工研究进展[J]. 表面技术, 2016,45(1): 28⁃35. |
SHI W T , LIU Y D , ZHANG Y A , et al . Research Progress on the Cutting Process of Aramid Fiber Composites[J]. Surface Technology, 2016, 45(1): 28⁃35. | |
31 | VOSS R , FRIEDRICH M , KUSTER F , et al . Comparison of Conventional Drilling and Orbital Drilling in Machining Carbon Fibre Reinforced Plastics (CFRP)[J]. Cirp Annals, 2016, 65(1): 137⁃140. |
32 | SCHULZE V , BECKE C , WEIDENMANN K , et al . Machining Strategies for Hole Making in Composites with Minimal Workpiece Damage By Directing the Process Forces Inwards[J]. Journal of Materials Processing Tech, 2011, 211(3): 329⁃338. |
33 | WANG Q , WU Y , BITOU T , et al . Proposal of A Tilted Helical Milling Technique For High Quality Hole Drilling of CFRP: Kinetic Analysis of Hole Formation And Material Removal[J]. Springer London, 2018, 94(9): 4 221⁃4 235. |
34 | GEIER N , DAVIM J P , SZALAY T . Advanced Cutting Tools And Technologies For Drilling Carbon Fibre Reinforced Polymer (CFRP) Composites: A review[J]. Composites Part A, 2019, 125: 105552. |
35 | GEIER N , SZALAY T . Optimisation of Process Parameters for the Orbital And Conventional Drilling of Uni⁃directional Carbon Fibre⁃reinforced Polymers (UD⁃CFRP)[J]. Measurement, 2017, 110: 319⁃334. |
36 | AMEUR M F , HABAK M , KENANE M , et al . Machinability Analysis of Dry Drilling of Carbon/epoxy Composites: Cases of Exit Delamination and Cylindricity Error[J]. The International Journal of Advanced Manufacturing Technology, 2017, 88(9/12): 2 557⁃2 571. |
37 | FEITO N , DÍAZ⁃ÁLVAREZ J , LÓPEZ⁃PUENTE J , et al . Experimental and Numerical Analysis of Step Drill bit Performance When Drilling Woven CFRPs[J]. Composite Structures, 2018, 184: 1 147⁃1 151. |
38 | ABHISHEK K , DATTA S , MAHAPATRA S S . Multi⁃objective Pptimization in Drilling of CFRP (Polyester) Composites: Application of a Fuzzy Embedded Harmony Search(HS) Algorithm[J]. Measurement, 2016, 77: 222⁃239. |
39 | FEITO N , DIAZ⁃ÁLVAREZ J , LÓPEZ⁃PUENTE J , et al . Numerical Analysis of the Influence of Tool Wear and Special Cutting Geometry When Drilling Woven CFRPs[J]. Composite Structures, 2016, 138: 285⁃294. |
40 | KARPAT Y , BAHTIYAR O . Tool Geometry Based Prediction of Critical Thrust Force While Drilling cCarbon Fiber Reinforced Polymers[J]. Advances in Manufacturing, 2015, 3(4): 300⁃308. |
41 | ANAND R S , PATRA K . Mechanistic Cutting Force modelling for Micro⁃drilling of CFRP Composite Laminates[J]. CIRP Journal of Manufacturing Science and Technology, 2017, 16: 55⁃63. |
42 | LI H , QIN X , HE G , et al . An Energy Based Force Prediction Method For UD⁃CFRP Orthogonal Machining[J]. Composite Structures, 2017, 159: 34⁃43. |
43 | FEITO N , DIAZ⁃ÁLVAREZ J , LÓPEZ⁃PUENTE J , et al . Numerical Analysis of the Influence of Tool Wear and Special Cutting Geometry When Drilling Woven CFRPs[J]. Composite Structures, 2016, 138: 285⁃294. |
44 | FEITO N , DÍAZ⁃ÁLVAREZ J , LÓPEZ⁃PUENTE J , et al . Experimental and Numerical Analysis of Step Drill Bit Performance When Drilling Woven CFRPs[J]. Composite Structures, 2018, 184: 1 147⁃1 155. |
45 | FEITO N , MILANI A S , MUÑOZ⁃SÁNCHEZ A . Drilling Pptimization of Woven CFRP Laminates Under Different Tool Wear Conditions: A Multi⁃objective Design of Experiments Approach[J]. Structural and Multidisciplinary Optimization, 2016, 53(2): 239⁃251. |
46 | QIN X , WANG B , WANG G , et al . Delamination Analysis of the Helical Milling of Carbon Fiber⁃Reinforced Plastics by Using the Artificial Neural Network Model[J]. Journal of Mechanical Science and Technology, 2014, 28(2): 713⁃719. |
47 | ZHU L , LIU B , CHEN H . Research on Chatter Stability in Milling and Parameter Optimization Based on Process Damping[J]. Journal of Vibration and Control, 2018, 24(12): 2 642⁃2 655. |
48 | ZHU L , LI H , WANG W . Research on Rotary Surface topography by orthogonal turn⁃milling[J]. International Journal of Advanced Manufacturing Technology, 2013,69(9/12): 2 279⁃2 292. |
49 | GEIER N , SZALAY T . Optimisation of Process Parameters for the Orbital and Conventional Drilling of Uni⁃directional Carbon Fibre⁃reinforced Polymers (UD⁃CFRP)[J]. Measurement, 2017, 110: 319⁃334. |
50 | ABHISHEK K , DATTA S , MAHAPATRA S S . Optimization of Thrust, Torque, Entry, and Exist Delamination Factor During Drilling of CFRP Composites[J]. The International Journal of Advanced Manufacturing Technology, 2015, 76(1/4): 401⁃416. |
51 | 马英怡, 刘玉德, 石文天, 等 .芳纶纤维增强复合材料的微铣削与铣磨精加工[J]. 材料导报, 2020, 34(16): 16 177⁃16 181. |
MA Y Y , LIU Y D , SHI W T , et al . Micro⁃milling and Grinding Finishing Process of Aramid Fiber Reinforced Polymer[J]. Materials Reports, 2020, 34(16): 16 177⁃16 181. | |
52 | ZHANG Y J , DONG G J , ZHOU M , et al . Simulation and Experiment Analysis on Thermal Deformation of Tool System in Single⁃point Diamond Turning of Aluminum Alloy[J]. Journal of Central South University, 2016,23(9): 2 223⁃2 229. |
53 | PAN Y , JI S , TAN D , et al . Cavitation⁃based Soft Abrasive Flow Processing Method[J]. International Journal of Advanced Manufacturing Technology, 2020,109: 2 587⁃2 602. |
54 | KARATA M A , KKAYA H G . A review on Machinability of Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) Composite Materials[J]. Defence Technology, 2018, 14(4): 318⁃326. |
[1] | 冯冰涛, 王晓珂, 张信, 孙国华, 汪殿龙, 侯连龙, 马劲松. 连续碳纤维增强热塑性复合材料制备与应用研究进展[J]. 中国塑料, 2022, 36(7): 165-173. |
[2] | 宋银宝, 杨建军, 李传敏. PDMS/SiC功能梯度复合材料性能与制造精度研究[J]. 中国塑料, 2022, 36(7): 30-36. |
[3] | 杨小龙, 陈文静, 李永青, 闫晓堃, 王修磊, 谢鹏程, 马秀清. 导电型聚合物/石墨烯复合材料的研究进展[J]. 中国塑料, 2022, 36(6): 165-173. |
[4] | 孙文博, 信春玲, 何亚东, 翟玉娇, 闫宝瑞. 玻璃纤维增强PBT微发泡工艺对其制品泡孔结构的影响[J]. 中国塑料, 2022, 36(5): 1-7. |
[5] | 王轲, 龙春光. PE⁃UHMW/海泡石纤维复合材料的力学性能与摩擦学性能研究[J]. 中国塑料, 2022, 36(5): 19-23. |
[6] | 陈胜, 梁颖超, 吴方娟, 方辉, 范新凤, 陈晖, 王永刚. 聚酰胺6/双向经编玻璃纤维复合材料的制备及其界面改性研究[J]. 中国塑料, 2022, 36(5): 24-28. |
[7] | 刘文, 师文钊, 刘瑾姝, 陆少锋, 周红娟. 电致形状记忆复合材料研究进展[J]. 中国塑料, 2022, 36(4): 175-189. |
[8] | 阮芳涛, 夏成龙, 张宝根, 曹叶, 刘志, 徐珍珍, 章劲草. 芳纶包覆碳纤维增强环氧树脂的轴向压缩性能研究[J]. 中国塑料, 2022, 36(4): 19-23. |
[9] | 彭博, 肖运彬, 顾家宝, 陈梓钧, 唐雁煌, 朱刚, 徐焕翔. 聚合物/石墨烯复合材料制备与性能研究进展[J]. 中国塑料, 2022, 36(4): 190-197. |
[10] | 宋立健, 张有忱, 左夏华, 张政和, 安瑛, 杨卫民, 谭晶, 程礼盛. 自组装单分子层调控界面热输运的研究进展[J]. 中国塑料, 2022, 36(4): 60-69. |
[11] | 何毅, 赵广慧. 复合材料增强修复油气管道的研究进展[J]. 中国塑料, 2022, 36(4): 70-82. |
[12] | 张庭, 金清平, 宋仕娥, 曹南南, 邓思远. 不同腐蚀环境下FRP筋耐久性与寿命预测研究进展[J]. 中国塑料, 2022, 36(3): 75-81. |
[13] | 刘延宽, 顾子琛, 王志平. 连续纤维增强热塑性预浸料制备工艺与发展趋势[J]. 中国塑料, 2022, 36(2): 172-181. |
[14] | 何明峰, 王珂, 王启扬, 杨肖, 郭红, 胡泊洋, 李保安. 聚偏氟乙烯/类基体基团修饰石墨烯导热复合材料研究[J]. 中国塑料, 2022, 36(2): 41-48. |
[15] | 李琪微, 王翠翠, 郑海军, 陈季荷, 王戈, 程海涛. 挤出循环对聚丙烯/竹粉复合材料力学及发泡性能的影响[J]. 中国塑料, 2022, 36(2): 56-60. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||