
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2022, Vol. 36 ›› Issue (11): 112-117.DOI: 10.19491/j.issn.1001-9278.2022.11.017
李万隆1, 杨卫民1, 兰天杰1, 李好义1, 丁玉梅1, 仇永宏2()
收稿日期:
2022-08-17
出版日期:
2022-11-26
发布日期:
2022-11-25
通讯作者:
仇永宏(1965—),男,高级工程师,从事工程技术(轻工)研究,2009hengyu@163.com
LI Wanlong1, YANG Weimin1, LAN Tianjie1, LI Haoyi1, DING Yumei1, QIU Yonghong2()
Received:
2022-08-17
Online:
2022-11-26
Published:
2022-11-25
Contact:
QIU Yonghong
E-mail:2009hengyu@163.com
摘要:
阐述了超临界流体(SCF)技术的原理、特性以及在塑料加工中的应用进展,具体介绍了SCF在塑料微发泡、塑料降解、塑料改性、无水染色、辅助雾化、萃取以及绿色增塑等方面的应用。可以看出SCF技术能够解决塑料加工中传统工艺难以克服的问题,在新型塑料加工技术中具有广阔的应用前景。SCF技术在塑料加工中的引入为塑料加工行业绿色化、高性能化发展提供了新途径。
中图分类号:
李万隆, 杨卫民, 兰天杰, 李好义, 丁玉梅, 仇永宏. 超临界流体在塑料加工中的应用研究进展[J]. 中国塑料, 2022, 36(11): 112-117.
LI Wanlong, YANG Weimin, LAN Tianjie, LI Haoyi, DING Yumei, QIU Yonghong. Research progress in supercritical fluid application in plastic processing[J]. China Plastics, 2022, 36(11): 112-117.
原料 | SCF参数 | 发泡参数a | 发泡效果 | 参考文献 |
---|---|---|---|---|
PLA | scCO2 | P1↑ | 泡体密度先增高后降低 | [ |
泡孔密度增高,泡体密度先增高后降低 | ||||
T1↑ | 泡孔平均直径先减小后增大 | |||
泡孔密度先增高后降低,体积膨胀率增大 | ||||
PS | scCO2 | P1↑ | 泡孔密度增高,粒径尺寸分布变窄 | [ |
泡孔尺寸分布变窄,平均直径减小 | ||||
T2↑ | 泡孔平均直径增大,泡孔密度降低 | |||
PC | scCO2 | P1↑ | 泡孔密度增高,泡体密度先增高后降低 | [ |
泡孔平均直径减小,泡孔尺寸分布变窄 | ||||
T1↑ | 发泡倍率先增大后减小 | |||
聚氯乙烯 | scCO2 | T1↑ | 泡孔密度降低,泡孔孔径增大 | [ |
T2↑ | 泡孔密度降低,泡孔孔径增大 | |||
PE | scCO2 | T1↑ | 平均泡孔直径先减小后增大 | [ |
泡孔密度先增高后降低 | ||||
P1↑ | 平均泡孔直径先减小后增大 | |||
发泡倍率增大,泡孔密度先增高后降低 | ||||
聚丙烯(PP) | scCO2 | T2↑ | 泡孔比重减小,泡孔孔径增大 | [ |
原料 | SCF参数 | 发泡参数a | 发泡效果 | 参考文献 |
---|---|---|---|---|
PLA | scCO2 | P1↑ | 泡体密度先增高后降低 | [ |
泡孔密度增高,泡体密度先增高后降低 | ||||
T1↑ | 泡孔平均直径先减小后增大 | |||
泡孔密度先增高后降低,体积膨胀率增大 | ||||
PS | scCO2 | P1↑ | 泡孔密度增高,粒径尺寸分布变窄 | [ |
泡孔尺寸分布变窄,平均直径减小 | ||||
T2↑ | 泡孔平均直径增大,泡孔密度降低 | |||
PC | scCO2 | P1↑ | 泡孔密度增高,泡体密度先增高后降低 | [ |
泡孔平均直径减小,泡孔尺寸分布变窄 | ||||
T1↑ | 发泡倍率先增大后减小 | |||
聚氯乙烯 | scCO2 | T1↑ | 泡孔密度降低,泡孔孔径增大 | [ |
T2↑ | 泡孔密度降低,泡孔孔径增大 | |||
PE | scCO2 | T1↑ | 平均泡孔直径先减小后增大 | [ |
泡孔密度先增高后降低 | ||||
P1↑ | 平均泡孔直径先减小后增大 | |||
发泡倍率增大,泡孔密度先增高后降低 | ||||
聚丙烯(PP) | scCO2 | T2↑ | 泡孔比重减小,泡孔孔径增大 | [ |
1 | Vinay Gangaraju, Tathagata Sardar, Roy Kunal, et al. One⁃pot super critical fluid synthesis of spinel MnFe2O4 nanoparticles and its application as anode material for Mg⁃ion battery[J]. Asian Journal of Chemistry, 2022, 34(4): 989⁃994. |
2 | Park Heejun, Kim Jeong Soo, Kim Sebin, et al. Pharmaceutical applications of supercritical fluid extraction of emulsions for micro⁃/nanoparticle formation[J]. Pharmaceutics, 2021, 13(11): 1928. |
3 | 张少敏, 金薇, 张晨晗, 等. 超临界流体色谱法拆分阿托伐他汀钙及其对映异构体杂质[J]. 中国药学杂志, 2018, 53(21): 1 856⁃1 860. |
ZHANG S M, JIN W, ZHANG C H,et al. Chiral separation of atorvastatin calcium and its enantiomeric impurity by supercritical fluid chromatography[J]. Chinese Pharmaceutical Journal, 2018, 53(21): 1 856⁃1 860. | |
4 | Vorobei A M, Parenago O O. Using supercritical fluid technologies to prepare micro⁃ and nanoparticles[J]. Russian Journal of Physical Chemistry A, 2021, 95(3): 407⁃417. |
5 | Muchahary Sangita,Deka Sankar Chandra. Impact of supercritical fluid extraction, ultrasound‐assisted extraction, and conventional method on the phytochemicals and antioxidant activity of bhimkol (Musa balbisiana) banana blossom[J]. Journal of Food Processing and Preservation, 2021, 45(7): 15639. |
6 | 黄沅玮. 超临界流体萃取技术及其在植物油脂提取中的应用[J]. 食品工程, 2020, 3: 12⁃15,61. |
HUANG Y W.Supercritical fluid extraction technology and its application in the extraction of vegetable oil[J]. Food Engineering, 2020, 3: 12⁃15,61. | |
7 | Miyazawa Taiki, Higuchi Ohki, Sasaki Masato, et al. Removal of chlorophyll and pheophorbide from Chlorella pyrenoidosa by supercritical fluid extraction: potential of protein resource[J]. Bioscience, Biotechnology, and Biochemistry, 2021, 85(7): 1 759⁃1 762. |
8 | 彭锦星. 基于醇类介质的生物质超临界液化转化燃油技术研究[D].杭州: 浙江林学院, 2008. |
9 | Chiara Brogna, Andrea Pucciarelli, Walter Ambrosini, et al. Capabilities of high y + wall approaches in predicting heat transfer to supercritical fluids in rod bundle geometries [J]. Annals of Nuclear Energy, 2018, 120(10): 272⁃278. |
10 | 候光武, 丁信伟, 陈彦泽, 等. 超临界二氧化碳传热特性的研究[J]. 化工装备技术, 2006, 27(1): 25⁃30. |
11 | 刘洋, 郜宇琦, 丁治英, 等. 超临界CO2大展身手的时代[J]. 大学化学,2022,9: 1⁃5. |
LIU Y, GAO Y Q, DING Z Y,et al. Age of supercritical carbon dioxide[J]. University Chemistry,2022,9: 1⁃5. | |
12 | Wang Xiaoyin, Liu Xiandong, Shan Yingchun, et al. Lightweight design of automotive wheel made of long glass fiber reinforced thermoplastic[J]. Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science, 2016, 230(10) : 1 634⁃1 643. |
13 | 王惠添, 殷莎, 陈正伟, 等. 微孔发泡注塑技术研究进展[J]. 中国塑料, 2021, 35(10): 154⁃165. |
WANG H T, YIN S, CHEN W Z,et al. Research progress in microcellular foam injection molding technology[J]. China Plastics, 2021, 35(10): 154⁃165. | |
14 | 代康. 通信线缆发泡技术的研究开发(上)[J]. 现代传输, 2016,5: 67⁃77. |
DAI K. Research & developments in the foaming technolo⁃gies for telecommunication cables(I)[J]. Modern Transmission, 2016,5: 67⁃77. | |
15 | 代康. 通信线缆发泡技术的研究开发(下)[J]. 现代传输, 2016,6: 65⁃72. |
DAI K. Research & developments in the foaming technologies for telecommunication cables(II)[J]. Modern Transmission, 2016,6: 65⁃72. | |
16 | Van Tran Thu, Usta Aybala, Asmatulu Ramazan. Functionalized hexagonal boron nitride nano⁃coatings for protection of transparent plastics[J]. Proceedings of Spie.The International Society For Optical Engineering, 2016, 9 799: 97993. |
17 | Gaur Vivek K, Gupta Shivangi, Sharma Poonam, et al. Metabolic cascade for remediation of plastic waste: a case study on microplastic degradation[J]. Current Pollution Reports, 2022, 8(1): 1⁃21. |
18 | Lin Zhenyan, Jin Tuo, Zou Tao, et al. Current progress on plastic/microplastic degradation: Fact influences and mechanism[J]. Environmental Pollution, 2022, 304: 119159. |
19 | 潘志彦, 胡自伟, 林春绵, 等. 聚苯乙烯在超临界二甲苯中的解聚[J]. 高校化学工程学报, 2002, 16(2): 227⁃231. |
PAN Z Y, HU Z W, LIN C M,et al. Depolymerization of polystyrene in supercritical xylene[J]. Journal of Chemical Engineering of Chinese Universities, 2002, 16(2): 227⁃231. | |
20 | 徐以国, 裘洲通. 微孔发泡注射成型技术研究进展[J]. 模具制造, 2020, 20(10): 57⁃63. |
XU Y G, QIU T Z. Research progress of microcellular foam injection molding[J]. Die & Mould Manufacture, 2020, 20(10): 57⁃63. | |
21 | 刘涛, 罗世凯, 王宪忠. 超临界CO2制备微孔聚碳酸酯及其泡孔特性研究[J]. 塑料科技, 2007, 35(7): 34⁃38. |
LIU T, LUO S S, WANG X Z. Preparation of microcellular polycarbonate foam processed in supercritical CO2 and its cell characteristics[J]. Plastics Science and Technology, 2007, 35(7): 34⁃38. | |
22 | 张平, 周南桥, 黄目张, 等. 发泡工艺对超临界CO2/PP微孔发泡泡孔形态的影响[J]. 塑料工业, 2007, 35(1): 345⁃347. |
ZHANG P, ZHOU N Q, HUANG M Z,et al. Effect of foaming parameter on cell morphology in microcellular foaming of supercritical CO2/PP[J]. China Plastics Industry, 2007, 35(1): 345⁃347. | |
23 | Chen Xiaopeng, Feng James J, Bertelo Christopher A. Plasticization effects on bubble growth during polymer foaming [J]. Polymer Engineering & Science, 2006, 46(1): 97⁃107. |
24 | 肖千珍. 聚乳酸超临界二氧化碳发泡研究[D].广州: 华南理工大学, 2012. |
25 | Lee Minhee, Costas Tzoganakis, Park Chul B. Extrusion of PE/PS blends with supercritical carbon dioxide[J]. Polymer Engineering & Science, 1998, 38(7): 1 112⁃1 120. |
26 | 胡琪卉. 通过超临界二氧化碳发泡技术制备导电聚苯乙烯/石墨烯纳米复合材料微孔泡沫[D].北京: 北京化工大学, 2014. |
27 | 廖若谷. 超临界二氧化碳发泡过程中聚合物泡孔结构的控制[D].上海: 上海交通大学, 2010. |
28 | 吴志昂, 郑晓平, 龚莉雯, 等. 发泡工艺及超临界二氧化碳诱导结晶作用对聚碳酸酯发泡行为的影响[J]. 材料导报, 2020, 34(8): 8 200⁃8 204. |
WU Z H, ZHENG X P, GONG W L, et al. Effects of foaming process and supercritical carbon dioxide induced crystallization on foaming behavior of polycarbonate [J]. Materials Reports, 2020, 34(8): 8 200⁃8 204. | |
29 | 徐兴家. CO2发泡聚氯乙烯过程研究[D].新疆: 新疆大学, 2019. |
30 | 秦升学, 孙祥, 刘杰, 等. 超高分子量聚乙烯超临界CO2间歇发泡研究[J]. 塑料科技, 2019, 47(10): 1⁃5. |
QIN S X, XUN X, LIU J,et al. Study on supercritical CO2 intermittent foaming of UHMWPE [J]. Plastics Scien⁃ce and Technology, 2019, 47(10): 1⁃5. | |
31 | Banerjee D, Dutta A, VimalK K, et al. Correlation of micro and macro⁃structural attributes with the foamability of modified polypropylene using supercritical CO2 [J]. Industrial & Engineering Chemistry Research, 2019, 58(27): 12 054⁃12 065. |
32 | 靳小平, 朱玉方, 徐卉桐, 等. 废弃塑料降解与回收再利用研究进展[J]. 工程塑料应用, 2021, 49(9): 139⁃144. |
JIN X P, ZHU Y F, XU H T, et al. Research progress on degradation and recycling of waste plastics[J]. Enginee⁃ring Plastics Application, 2021, 49(9): 139⁃144. | |
33 | Saritha B, Sindgi Sanakausar A, Remadevi O K. Plastic degrading microbes: a review[J]. Microbiology Research Journal International, 2021: 22⁃28. |
34 | Qi Xinhua, Ma Yuan, Chang Hanchen, et al. Evaluation of PET degradation using artificial microbial consortia[J]. Frontiers in Microbiology, 2021, 12: 778828. |
35 | Fávaro S L, Freitas A R, Ganzerli T A, et al. PET and aluminum recycling from multilayer food packaging using supercritical ethanol[J]. Journal of Supercritical Fluids, 2013, 75: 138⁃143. |
36 | 曹维良, 张敬畅, 李勇. 超临界流体技术在PET解聚中的应用[J]. 北京化工大学学报, 1999, 26(4): 73⁃74. |
CAO W L, ZHANG J C, LI Y. Application of supercritical fluid technique in the degradation of PET waste[J]. Journal of Beijing University of Chemical Technology(Natural Science Edition), 1999, 26(4): 73⁃74. | |
37 | 陈怀涛, 臧春坤. 聚苯乙烯在超临界流体中的降解研究[J]. 石油化工技术与经济, 2009, 25(1): 33⁃35. |
CHEN H T, ZANG C C. Study on polystyrene degradation in supercritical solvents[J]. Technology & Economi⁃cs in Petrochemicals, 2009, 25(1): 33⁃35. | |
38 | Douglas Lilac W, Lee Sunggyu. Kinetics and mechanisms of styrene monomer recovery from waste polystyrene by supercritical water partial oxidation[J]. Advances in Environmental Research, 2001, 6(1): 9⁃16. |
39 | 周晴, 黄婕, 倪燕慧, 等. 聚碳酸酯在超临界乙醇中的降解[J]. 华东理工大学学报:自然科学版, 2006, 32(9): 1 025⁃1 029. |
ZHOU Q, HUANG J, NI C H, et al. Degradation of polycarbonate in supercritical ethanol[J]. Journal of East China University of Science and Technology(Natural Science Edition), 2006, 32(9): 1 025⁃1 029. | |
40 | 包贞. 超临界流体解聚聚碳酸酯的研究[D].杭州: 浙江工业大学, 2004. |
41 | Li Zhengkun, Liu Yuansen, Min Nie, et al. Self⁃assembly behavior of aryl amide nucleating agent under supercritical carbon dioxide and its influence on polypropylene[J]. Polymer⁃Plastics Technology and Engineering, 2017, 56(18): 1 937⁃1 941. |
42 | Fu Dajiong, Feng Chen, Kuang Tairong, et al. Supercritical CO2 foaming of pressure⁃induced⁃flow processed linear polypropylene[J]. Materials & Design, 2016, 93: 509⁃513. |
43 | 齐海群, 范大鹏, 王巍. 超临界正戊烷在树脂挤出过程中的增塑作用[J]. 哈尔滨工程大学学报, 2019, 40(3): 603⁃607. |
QI H Q, FAN D P, WANG W. Plasticizing effect of supercritical n⁃pentane in resin extrusion[J]. Journal of Harbin Engineering University, 2019, 40(3): 603⁃607. | |
44 | Alessia Di Capua, Renata Adami, Emanuela Cosenza, et al. β⁃Carotene/PVP microspheres produced by supercritical assisted atomization[J]. Powder Technology, 2019, 346:228⁃236. |
45 | 于立秋, 张淑芬, 杨锦宗. 合成纤维的超临界二氧化碳染色[J]. 染料与染色, 2006, 43(3): 20⁃24. |
YU L Q, ZHANG S F, YANG J Z. Research on dyeing synthetic fibers in supercritical carbon dioxide[J]. Dyestuffs and Coloration, 2006, 43(3): 20⁃24. | |
46 | 蒋勇, 董擎之, 杨玉英. 聚对苯二甲酸丁二酯纤维在超临界二氧化碳介质中的染色研究[J]. 合成纤维工业, 2003, 26(6): 18⁃20. |
JIANG Y, DONG Q Z, YANG Y Y. Study on dyeing behavior of polybutylene terephthalate fibers in supercritical carbon dioxide medium[J]. China Synthetic Fiber Industry, 2003, 26(6): 18⁃20. |
[1] | 马超, 马兰荣, 魏辽, 尹慧博, 林祥. 聚乙醇酸材料的加工改性及其水下降解特性的研究进展[J]. 中国塑料, 2022, 36(9): 74-84. |
[2] | 苗丹, 宋玉平, 王文倩. 我国中空吹塑行业发展现状及“十四五”期间重点产品、工艺和设备发展方向[J]. 中国塑料, 2022, 36(9): 57-62. |
[3] | 马国成, 何圳, 陈少军. 醋酸纤维素的降解性研究进展[J]. 中国塑料, 2022, 36(9): 111-121. |
[4] | 林健辉, 卢嘉慧, 吴欣颖, 范雪滢, 邓桂荣, 高亮, 梅承芳, 杨永刚. 受控堆肥条件下可降解材料最终需氧生物分解能力测定的不确定度评定研究[J]. 中国塑料, 2022, 36(9): 140-147. |
[5] | 宋丹阳, 郑红娟, 李一龙. 聚乳酸基油水分离材料研究进展[J]. 中国塑料, 2022, 36(9): 187-192. |
[6] | 熊一鸣, 宋季岭, 秦舒浩, 龙雪彬, 鲁显睿. 改性热塑性淀粉的制备及其与PBAT复合薄膜的性能[J]. 中国塑料, 2022, 36(8): 69-72. |
[7] | 林文, 赵晶晶, 苏婷婷, 王战勇. 聚苯乙烯生物降解研究进展[J]. 中国塑料, 2022, 36(7): 143-149. |
[8] | 吴雄杰, 朱东波, 孙江波, 高龙美, 储雨, 程劲松, 谢爱迪. 聚乙烯/纳米硫酸钙粉体复合软包装应用性能研究[J]. 中国塑料, 2022, 36(6): 10-15. |
[9] | 马占峰, 牛国强, 芦珊. 中国塑料加工业(2021)[J]. 中国塑料, 2022, 36(6): 142-148. |
[10] | 邵琳颖, 郗悦玮, 翁云宣. 可降解聚乳酸复合材料研究进展[J]. 中国塑料, 2022, 36(6): 155-164. |
[11] | 魏茂强. 农用塑料薄膜的发展与探讨[J]. 中国塑料, 2022, 36(6): 92-99. |
[12] | 孙文博, 信春玲, 何亚东, 翟玉娇, 闫宝瑞. 玻璃纤维增强PBT微发泡工艺对其制品泡孔结构的影响[J]. 中国塑料, 2022, 36(5): 1-7. |
[13] | 冀峰, 龚炜华, 张艳, 罗水源, 于庆雨, 朱君秋, 郭江彬. 超临界二氧化碳釜压发泡法制备生物可降解PBAT发泡颗粒[J]. 中国塑料, 2022, 36(5): 122-126. |
[14] | 吴雄杰, 陶强, 朱东波, 程劲松, 储雨, 许磊. 食品接触用生物降解塑料购物袋材质鉴别与总迁移量研究[J]. 中国塑料, 2022, 36(5): 127-132. |
[15] | 魏辽. 水溶性高分子材料在油气田压裂中的应用研究进展[J]. 中国塑料, 2022, 36(5): 149-157. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||