
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2022, Vol. 36 ›› Issue (11): 183-191.DOI: 10.19491/j.issn.1001-9278.2022.11.026
• 综述 • 上一篇
收稿日期:
2022-07-26
出版日期:
2022-11-26
发布日期:
2022-11-25
通讯作者:
温变英(1964—),女,教授,从事高分子功能复合材料、生物基塑料及绿色复合材料、高分子材料循环利用等研究,wenby@btbu.edu.cn基金资助:
LIU Jinyu, JIA Yongxing, WEN Bianying(), QIU Munan
Received:
2022-07-26
Online:
2022-11-26
Published:
2022-11-25
Contact:
WEN Bianying
E-mail:wenby@btbu.edu.cn
摘要:
介绍了玉米秸秆、水稻秸秆及小麦秸秆的利用现状,阐述了秸秆纤维的表面处理方法(物理处理法、化学处理法及其他处理法),综述了生物降解聚酯/秸秆纤维全生物降解复合材料的主要品种及性能,最后对生物降解聚酯/秸秆纤维全生物降解复合材料未来的研究及开发方向进行了展望。
中图分类号:
刘金宇, 贾勇星, 温变英, 邱穆楠. 生物降解聚酯/秸秆纤维全生物降解复合材料研究进展[J]. 中国塑料, 2022, 36(11): 183-191.
LIU Jinyu, JIA Yongxing, WEN Bianying, QIU Munan. Research progress in fully biodegradable polyester/straw plant fiber composites[J]. China Plastics, 2022, 36(11): 183-191.
1 | 李永磊,董伯骏,赵小燕. 可降解塑料深度之一:限塑政策加码,可降解塑料迎良机[R]. 上海:国海证券研究所,2021: 10. |
2 | 温变英,李晓媛,张扬. 苎麻纤维/聚乳酸复合材料在不同pH环境下的水解行为[J]. 复合材料学报,2015,32(1):54⁃60. |
WEN B Y, LI X Y, ZHANG Y. Hydrolysis behaviors of ramie fiber/polylactic acid composites under different pH conditions[J]. Acta Materiae Compositae Sinica, 2015, 32(1): 54⁃60. | |
3 | 李文龙,马孝博,张金波,等.农作物秸秆综合处理及有效利用[J].中国科技信息,2021,(16):41⁃42. |
4 | 马芮.秸秆焚烧危害及禁烧措施探究[J].农村实用技术,2020,5:143. |
5 | 于法稳,杨果.农作物秸秆资源化利用的现状、困境及对策[J].社会科学家,2018,2:33⁃39. |
6 | 张燕.中国秸秆资源“5F”利用方式的效益对比探析[J].中国农学通报,2009,25(23):45⁃51. |
Zhang Y. The analysis contrastively on “5F” utilization of straw resource in China[J]. Chinese Agricultural Science Bulletin, 2009, 25(23): 45⁃51. | |
7 | 王红梅,屠焰,张乃锋,等.中国农作物秸秆资源量及其“五料化”利用现状[J].科技导报,2017,35(21):81⁃88. |
WANG H M, TU Y, ZHANG N F, et al. Chinese crop straw resource and its utilization status[J]. Science & Technology Review, 2017, 35(21): 81⁃88. | |
8 | 梁勇.2022年1月世界农产品供需形势预测简报[J].世界农业,2022,2:127⁃132. |
9 | 王超,刘金明,王春圻.玉米秸秆碱性预处理技术研究进展[J].黑龙江八一农垦大学学报,2022,34(2):23⁃31. |
Wang C, Liu J M, Wang C Q. Research progress on alkaline pretreatment of corn stalk[J]. Journal of Heilongjiang Bayi Agricultural University, 2022, 34(2): 23⁃31. | |
10 | Qi Z, Wang B, Sun C, et al. Comparison of properties of poly (lactic acid) composites prepared from different components of corn straw fiber[J]. International Journal of Molecular Sciences, 2022, 23(12): 6746. |
11 | ChenJuan,TengZhaoyang,WuJianjun, et al. Recycling of waste FRP and corn straw in wood plastic composite[J]. Polymer Composites, 2017,38(10): 2 140⁃2 145. |
12 | Jiang D, Wang Y, Li B, et al. Environmentally friendly alternative to polyester polyol by corn straw on preparation of rigid polyurethane composite[J]. Composites Communications, 2019, 17:109⁃114. |
13 | Ma H, Yang J, Gao X, et al. Removal of chromium (VI) from water by porous carbon derived from corn straw: Influencing factors, regeneration and mechanism[J]. Journal of Hazardous Materials, 2019, 369(5): 550⁃560. |
14 | 贾宏定,黄丽娟,刘蕾,等.不同品种水稻秸秆青贮品质的比较研究[J].草地学报,2022,5: 1 310⁃1 318. |
JIA H D, HUANG L J, LIU L,et al. Comparative study on the quality of rice straw silage of different varieties[J]. Acta Agerstia Sinice,2022,5: 1 310⁃1 318. | |
15 | 王磊,何春霞,姜良朋,等.9种植物秸秆纤维理化性能对比研究[J].南京农业大学学报,2019,42(4):775⁃780. |
WANG L, HE C X, JIANG L P, et al.A comparative study on physicochemical properties of nine kinds of plant straw fibers[J]. Journal of Nanjing Agricultural University, 2019, 42(4): 775⁃780. | |
16 | Xu H, Dun M, Zhang Z, et al. A new process of prepa⁃ring rice straw⁃reinforced LLDPE composite[J]. Polymers, 2022, 14(11): 2243. |
17 | Ali⁃Eldin S S, El⁃Moezz S M A, Megahed M, et al. Study of hybridization effect of new developed rice straw mat/glass fiber reinforced polyester composite[J]. Journal of Natural Fibers, 2019,3:1⁃13. |
18 | Ecp A, Dbs B, Kjs B, et al. Sustainable application of rice husk and rice straw in cellular concrete composites[J]. Construction and Building Materials, 283: 122770. |
19 | Schneider D, Wassersleben S, Wei M, et al. A generali⁃zed procedure for the production of high⁃grade, porous biogenic silica[J]. Waste and Biomass Valorization, 2018(4):1⁃15. |
20 | Suramaythangkoor T, Gheewala S H. Potential of practical implementation of rice straw⁃based power generation in Thailand[J]. Energy Policy, 2008, 36(8): 3 193⁃3 197. |
21 | Logeswaran J, Shamsuddin A H, Silitonga A S, et al. Prospect of using rice straw for power generation: a review[J]. Environmental Science and Pollution Research, 2020, 27(21): 25 956⁃25 969. |
22 | Dixit S, Yadav V L. Optimization of polyethylene/polypropylene/alkali modified wheat straw composites for packaging application using RSM[J]. Journal of Cleaner Production, 2019, 240: 118228. |
23 | Bian H, Gao Y, Luo J, et al. Lignocellulosic nanofibrils produced using wheat straw and their pulping solid residue: From agricultural waste to cellulose nanomaterials[J]. Waste Management, 2019, 91: 1⁃8. |
24 | Wang Y, Wu K, Xiao M, et al. Thermal conductivity, structure and mechanical properties of konjac glucomannan/starch based aerogel strengthened by wheat straw[J]. Carbohydrate polymers, 2018, 197: 284⁃291. |
25 | Qiao X, Wang Z, Sun K. Renewable rice straw cellulose nanofibril reinforced poly(ε⁃caprolactone) composite films[J]. 2022:1⁃17. |
26 | Yu W, Dong L, Lei W, et al. Effects of rice straw powder (RSP) size and pretreatment on properties of FDM 3D⁃printed RSP/poly(lactic acid) biocomposites[J]. Molecules, 2021(11):3234. |
27 | Chougan M, Ghaffar S H, Al⁃Kheetan M J, et al. Wheat straw pre⁃treatments using eco⁃friendly strategies for enhancing the tensile properties of bio⁃based polylactic acid composites[J]. Industrial Crops and Products, 2020, 155: 112836. |
28 | Li W, Zheng L, Teng D, et al. Interfacial modified unidirectional wheat straw/polylactic acid composites[J]. Journal of Industrial Textiles, 2022, 51(1):272⁃284. |
29 | RolFleur, Mohamed Naceur Belgacem, GandiniAlessandro, et al. Recent advances in surface⁃modified cellulose nanofibrils[J]. Progress in Polymer Science,2019,88: 241⁃264. |
30 | 韩帮军,顾仁政,鹿钦礼.农业废弃秸秆纤维填充聚氯乙烯复合材料相容性的实验 探究[J].塑料科 技,2021,49(8):11⁃15. |
HAN B J, GU R Z, LU Q L. Experimental study on the compatibility of polyvinyl chloride composites filled with agricultural discarded straw fiber[J]. Plastics Science and Technology, 2021, 49(8): 11⁃15. | |
31 | 盛雨峰,温变英,胡笑千.硅烷偶联剂对聚乳酸/甘蔗渣复合材料力学性能的影响[J].中国塑料,2012,26(1):87⁃92. |
SHENG Y F, WEN B Y, HU X Q. Effect of silance coup⁃ling agent on mechanical properties of PLA/bagasse composite[J]. China Plastics, 2012, 26(1): 87⁃92. | |
32 | 盛雨峰,温变英,李晓媛,等.蔗渣纤维表面处理方法对蔗渣纤维/聚乳酸复合材料力学性能的影响[J].复合材料学 报,2012,29(6):60⁃65. |
SHENG Y F, WEN B Y, LI X Y, et al. Effect of surface treatment on the mechanical properties of BF/PLA composite[J]. Library Theory and Practice, 2012, 29(6): 60⁃65. | |
33 | Duek J, Jerman M, Podlena M, et al. Sustainable composite material based on surface⁃modified rape straw and environment⁃friendly adhesive[J].Construction and Buil⁃ding Materials, 2021, 300: 124036. |
34 | Wang D, Xuan L, Han G, et al. Preparation and characterization of foamed wheat straw fiber/polypropylene composites based on modified nano⁃TiO2 particles[J]. Composites Part A: Applied Science and Manufacturing, 2020, 128: 105674. |
35 | 杨光远,彭三文,王闻,等.改性凹凸棒土增容PP/PGA复合材料及纤维的结构与性能[J].塑料工业,2022,50(1):119⁃123,141. |
YANG G Y, PENG S W, WANG W, et al. Structure and properties of PP/PGA composites and fibers compatibilized by modified attapulgite[J]. China Plastics Industry, 2022, 50(1):119⁃123,141. | |
36 | Zhu L, Qiu J, Liu W, et al. Mechanical and thermal properties of rice straw/PLA modified by nano Attapulgi⁃te/PLA interfacial layer[J]. Composites Communications, 2019, 13(8): 18⁃21. |
37 | As’ad Zandi, Amirhossein Zanganeh, Farkhondeh Hemmati, et al. Thermal and biodegradation properties of poly(lactic acid)/rice straw composites: effects of modified pulping products[J]. Iranian Polymer Journal, 2019, 28:403⁃415. |
38 | Hýsková P, Štěpán Hýsek, Schönfelder O, et al. Utilization of agricultural rests: straw⁃based composite panels made from enzymatic modified wheat and rapeseed straw[J]. Industrial Crops and Products, 2019, 144: 112067. |
39 | 侯玉双,李春娇.协同表面处理玉米秸秆/HDPE复合材的胶接耐水性能的研究[J].高分子通报,2022,4:69⁃73. |
HOU Y S, LI C J. Study on adhesive water resistance of corn⁃stalk/HDPE composites with combined surface treatment[J]. Polymer Bulletin, 2022,4:69⁃73. | |
40 | Chen W, Xu Y, Shi S, et al. Fast modification on wheat straw outer surface by water vapor plasma and its application on composite material[J]. Scientific Reports, 2018, 8(1): 1⁃8. |
41 | Štěpán Hýsek, Milan Podlena, Martin Böhm, et al. Effect of cold plasma surface pre⁃treatment of wheat straw particles on straw board properties[J]. Bioresources, 2018, 13(3): 5 065⁃5 079. |
42 | 陈庆,杨欣宇.生物降解塑料三大主流技术——市场价值分析[J].塑料工业,2008,36(12):75⁃79. |
43 | Zhang J F, Sun X. Mechanical properties of poly(lactic acid)/starch composites compatibilized by maleic anhydride[J]. Biomacromolecules, 2004, 5(4): 1 446⁃1 451. |
44 | Shady Farah, Anderson Daniel G, Robert Langer. Physical and mechanical properties of PLA, and their functions in widespread applications—A comprehensive review[J]. Advanced Drug Delivery Reviews, 2016:107: 367⁃392. |
45 | Cichorek M, Piorkowska E, Krasnikova N. Stiff biodegradable polylactide composites with ultrafine cellulose filler[J]. Journal of Polymers and the Environment, 2017, 25(1): 74⁃80. |
46 | Oksman K, Skrifvars M, Selin J F. Natural fibres as reinforcement in polylactic acid (PLA) composites[J]. Composites Science and Technology,2003, 63(9): 1 317⁃1 324. |
47 | Song X, Guo Z, Wu J, et al. Fabrication and characterization of soybean straw and polylactide acid⁃based hybrid bio⁃board[J]. Journal of Adhesion Science and Technology, 2022: 1⁃18. |
48 | Chen K, Liao C, Li P, et al. A Compatible interface of wheat straw/polylactic acid composites collaborative constructed using KH570–Nano TiO2 [J]. Journal of Polymers and the Environment, 2022, 30(6):2 209⁃2 221. |
49 | Jiang J, Gu H, Li B, et al. Preparation and properties of straw/PLA wood plastic composites for 3D printing[J]. IOP Conference Series: Earth and Environmental Scien⁃ce, 2021, 692(3):032004. |
50 | Mohamed R M, Yusoh K. A review on the recent research of polycaprolactone (PCL)[J]. Advanced Materials Research, 2016, 1 134: 249⁃255. |
51 | Ilyas R A, Zuhri M Y M, Norrrahim M N F, et al. Natural fiber⁃reinforced polycaprolactone green and hybrid biocomposites for various advanced applications[J]. Polymers, 2022, 14(1): 182. |
52 | Chavalitpanya K, Phattanarudee S. Poly(lactic acid)/polycaprolactone blends compatibilized with block copolymer[J]. Energy Procedia, 2013, 34(1): 542⁃548. |
53 | Karakus K. Polycaprolactone (PCL) based polymer composites filled wheat straw flour[J]. Kastamonu University Journal of Forestry Faculty, 2016, 16(1): 264⁃268. |
54 | Khandanlou R, Ahmad M B, Shameli K, et al. Effect of unmodified rice straw on the properties of rice straw/polycaprolactone composites[J]. Research on Chemical Intermediates, 2015, 41(9): 6 371⁃6 384. |
55 | Wu C S, Liao H T. Polycaprolactone⁃based green renewable ecocomposites made from rice straw fiber: characteri⁃zation and assessment of mechanical and thermal properties[J]. Industrial & Engineering Chemistry Research, 2012, 51(8): 3 329⁃3 337. |
56 | 吕丽华,李臻,张多多.废弃秸秆/聚己内酯吸声复合材料的制备与性能[J].纺织学报,2022,43(1):28⁃35. |
LÜ L H, LI Z, ZHANG D D. Preparation and properties of sound absorbing composites based on use of waste straw/polycaprolactone[J]. Journal of Textile Research, 2022, 43(1): 28⁃35. | |
57 | 张磊. 地膜用生物降解支化共聚酯的吹膜加工与改性[D].杭州:浙江大学,2015. |
58 | Cardoso E, Oliveira R R, Machado G, et al. Study of flexible films prepared from PLA/PBAT blend and PLA E⁃beam irradiated as compatibilizing agent[J]. Springer International Publishing, 2017: 121–129. |
59 | Feng J, Zhang W, Wang L, et al. Performance comparison of four kinds of straw/PLA/PBAT wood plastic composites[J]. Bioresources, 2020, 15(2): 2 596⁃2 604. |
60 | Xu Z, Qiao X, Sun K. Environmental⁃friendly corn stover/poly (butylene adipate⁃co⁃terephthalate) biocomposi⁃tes[J]. Materials Today Communications, 2020, 25: 101541. |
61 | Tsou C H, Chen Z J, Yuan S, et al. The preparation and performance of poly (butylene adipate) terephthalate/corn stalk composites[J]. Current Research in Green and Sustainable Chemistry, 2022: 100329. |
62 | Angellier‐Coussy H, Kemmer D, Gontard N, et al. Phy⁃sical⁃chemical and structural stability of PHBV/wheat straw fibers based biocomposites under food contact conditions[J]. Journal of Applied Polymer Science, 2020, 137(40): 49231. |
63 | Gómez⁃Gast N, Cuellar M D L, Vergara⁃Porras B, et al. Biopackaging potential alternatives: bioplastic composites of polyhydroxyalkanoates and vegetal fibers[J]. Polymers, 2022, 14(6): 1 114⁃1 128. |
64 | Berthet M A, Angellier⁃Coussy H, Chea V, et al. Sustainable food packaging: Valorising wheat straw fibres for tuning PHBV⁃based composites properties[J]. Compo⁃sites Part A, 2015, 72: 139⁃147. |
65 | Berthet M A, Commandre J M, Rouau X, et al. Torrefaction treatment of lignocellulosic fibres for improving fibre/matrix adhesion in a biocomposite[J]. Materials & Design, 2016, 92(2): 223⁃232. |
66 | 周鑫,韩耀霞,邓仕槐,等.PLA、PPC或PBAT与2次改性小麦秸秆全降解复合材料的力学性能与生态风险[J].环境工程学报,2017,11(12):6 443⁃6 449. |
ZHOU X, HAN Y X, DENG S H, et al. Mechanical properties and ecological risk of degradable composites based on twice modified wheat straw fiber and PLA, PPC or PBAT[J]. Chinese Journal of Environmental Enginee⁃ring, 2017, 11(12): 6 443⁃6 449. | |
67 | Zhao Y, Qiu J, Feng H, et al. The interfacial modification of rice straw fiber reinforced poly(butylene succinate) composites: Effect of aminosilane with different alkoxy groups[J]. Journal of Applied Polymer Science, 2012, 125(4): 3 211⁃3 220. |
68 | Robledo⁃Ortíz J R, Martín del Campo A S, Blackaller J A, et al. Valorization of sugarcane straw for the development of sustainable biopolymer⁃based composites[J]. Polymers, 2021, 13(19): 3335. |
69 | Allahbakhsh A.PVC/Rice Straw/SDBS⁃modified graphene oxide sustainable nanocomposites: melt mixing process and electrical insulation characteristics[J]. Composi⁃tes Part A: Applied Science and Manufacturing, 2020, 134:105902. |
[1] | 李璐, 刘飞翔, 罗慧玲, 陈国华. 石墨烯复合浆料应用于ABS塑料电镀前表面处理[J]. 中国塑料, 2021, 35(6): 40-45. |
[2] | 陈俊祥, 傅南红, 王瑞雪, 党开放, 杨卫民, 谢鹏程. 表面结构对金属/塑料复合注射成型界面结合强度的影响[J]. 中国塑料, 2020, 34(4): 49-53. |
[3] | 侯成敏, 王梅, 张效林, 李娜, 卓光铭. 超疏水PE-HD/麦秸秆纤维复合材料的制备及其性能[J]. 中国塑料, 2019, 33(9): 33-40. |
[4] | 赵磊, 姜为青, 刘华, 李桂付, 周红涛. 生物可降解山麻杆韧皮纤维增强PBS复合材料的性能研究[J]. 中国塑料, 2019, 33(12): 73-79. |
[5] | 王亚洁, 吴进雪, 公艳艳, 谭洪生. 聚丁二酸丁二醇酯/椰壳纤维复合材料的界面改性研究[J]. 中国塑料, 2017, 31(06): 59-64 . |
[6] | 林娟, 温变英, 闫万琪, 王梓刚, 梁树旺. 纳米硫酸钡及其对聚合物的改性效用[J]. 中国塑料, 2016, 30(09): 1-8 . |
[7] | 顾红艳 丁兰英. 纳米SiC粒子的表面处理对PTFE/纳米SiC复合材料的性能影响[J]. 中国塑料, 2010, 24(11): 58-61 . |
[8] | 王华山 . 环氧丙烷/CO2等离子处理对PET薄膜阻氧性能的影响[J]. 中国塑料, 2008, 22(10): 62-64. |
[9] | 翁盛光, 陈建定, 夏浙安, 章圣苗. 纳米碳酸钙在醇相中的表面处理及其原位复合材料制备[J]. 中国塑料, 2008, 22(01): 29-34 . |
[10] | 刘晓烨, 戴干策. 黄麻纤维增强聚丙烯界面剪切强度的研究[J]. 中国塑料, 2007, 21(7): 24-28. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||