
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2023, Vol. 37 ›› Issue (2): 113-120.DOI: 10.19491/j.issn.1001-9278.2023.02.016
收稿日期:
2022-11-09
出版日期:
2023-02-26
发布日期:
2023-02-22
通讯作者:
李根(1991—),男,工程师,从事高分子材料检测技术研究,lig0809.zhlh@sinopec.comReceived:
2022-11-09
Online:
2023-02-26
Published:
2023-02-22
Contact:
LI Gen
E-mail:lig0809.zhlh@sinopec.com
摘要:
对食品接触材料中可能产生的食品污染物及其分析技术进行综述,重点介绍了抗氧化剂、有意添加物、非有意添加物(NIAS)、低聚物、挥发性气味物质等污染物,以及其定性分析技术(挥发性有机化合物、非挥发性有机化合物)、表面分析技术及定量分析技术,以期为食品接触材料的质量管控及食品安全的监管提供技术参考。
中图分类号:
蒲晨露, 李根. 食品接触材料中污染物分析技术的研究进展[J]. 中国塑料, 2023, 37(2): 113-120.
PU Chenlu, LI Gen. Research progress in analytic technology of contaminants in food packaging[J]. China Plastics, 2023, 37(2): 113-120.
类别 | 分析方法 | 优点 | 缺点 |
---|---|---|---|
挥发性有机化合物 | 气相色谱法(GC⁃FID) | 分析时间相对较短,结构简单、成本低 | 不能直接给出定性分析结果,对无机物和易分解的高沸点有机物分析比较困难 |
GC⁃MS | 可直接定性,价格低廉,易于维护 | 定性能力不足,分辨力有限 | |
GC⁃O⁃MS | 可进行气味分析 | 定性分析效果不佳 | |
固相微萃取⁃气相色谱⁃质谱联用(SPME⁃GC⁃MS) | 灵敏度较高、允许直接分析气、固、液等不同基体样品 | 重复性差,不适于定量检测 | |
APGC⁃Q⁃TOF⁃MS | 分辨率较高、灵敏度较高、扫描速度快、质量上限高 | 分辨率不如GC⁃Q⁃Orbitrap⁃MS,APGC不适合烷烃的电离 | |
GC⁃Q⁃Orbitrap⁃MS | 分辨率高,灵敏度高、定性能力强 | 成本高,维护复杂,扫描速度慢 | |
非挥发性有机化合物 | 高效液相色谱⁃紫外/荧光检测法(HPLC⁃UV/Fluorescence) | 不受样品挥发性和热稳定性的限制 | 不能直接给出定性分析结果,分析时间比GC法长 |
UPLC⁃Q⁃TOF⁃MS | 分辨率较高、速度快、质量上限高 | 分辨率不如Orbitrap⁃MS | |
超高效液相色谱⁃三重四极杆串联质谱(UPLC⁃QqQ⁃MS) | 适合目标分析与定量分析,灵敏度非常高 | 分辨率有限,容易受质荷比近似离子的干扰 | |
线性离子阱⁃静电场轨道阱组合式高分辨质谱(LTQ⁃Orbitrap) | 质量准确度高、分辨率高、质量动态范围较宽 | 定量能力不如QqQ,成本高 | |
离子淌度⁃四极杆飞行时间质谱联用(Vion IMS Q⁃TOF⁃MS) | 能够区分同分异构体,分离选择性增加 | 重复性稍差,价格昂贵 | |
ASAP⁃Q⁃TOF⁃MS | 样品无需前处理,可直接分析 | 灵敏度较低 | |
实时直接分析质谱(DART⁃MS) | 可对样品高通量、无损、直接分析,无需化学溶剂的消耗 | 没有分离功能 | |
液滴萃取表面分析⁃电喷雾质谱(LESA⁃ESI⁃MS) | 能够通过浸渍直接从样品表面萃取样品 | 需要溶剂,ESI容易受到离子抑制的影响 | |
显微拉曼光谱(mRaman) | 样品无需前处理、测定时间短,灵敏度较高 | 结果容易受荧光现象、光学系统参数的影响 | |
纳米颗粒 | 单粒子⁃电感耦合等离子体质谱(SP⁃ICP⁃MS) | 可进行尺寸表征和元素分析、测定颗粒数量浓度 | 不提供关于颗粒形状或直径的直接信息 |
热裂解⁃气相色谱质谱(Pyr⁃GC⁃MS) | 可实现聚合物鉴定和块状样品(半)定量 | 样品通量低,不能完全反映样品的组成和结构 | |
热萃取热脱附⁃气相色谱质谱(TED⁃GC⁃MS) | 灵敏度高 | 需根据样品中物质的类型选择合适的吸附管 |
类别 | 分析方法 | 优点 | 缺点 |
---|---|---|---|
挥发性有机化合物 | 气相色谱法(GC⁃FID) | 分析时间相对较短,结构简单、成本低 | 不能直接给出定性分析结果,对无机物和易分解的高沸点有机物分析比较困难 |
GC⁃MS | 可直接定性,价格低廉,易于维护 | 定性能力不足,分辨力有限 | |
GC⁃O⁃MS | 可进行气味分析 | 定性分析效果不佳 | |
固相微萃取⁃气相色谱⁃质谱联用(SPME⁃GC⁃MS) | 灵敏度较高、允许直接分析气、固、液等不同基体样品 | 重复性差,不适于定量检测 | |
APGC⁃Q⁃TOF⁃MS | 分辨率较高、灵敏度较高、扫描速度快、质量上限高 | 分辨率不如GC⁃Q⁃Orbitrap⁃MS,APGC不适合烷烃的电离 | |
GC⁃Q⁃Orbitrap⁃MS | 分辨率高,灵敏度高、定性能力强 | 成本高,维护复杂,扫描速度慢 | |
非挥发性有机化合物 | 高效液相色谱⁃紫外/荧光检测法(HPLC⁃UV/Fluorescence) | 不受样品挥发性和热稳定性的限制 | 不能直接给出定性分析结果,分析时间比GC法长 |
UPLC⁃Q⁃TOF⁃MS | 分辨率较高、速度快、质量上限高 | 分辨率不如Orbitrap⁃MS | |
超高效液相色谱⁃三重四极杆串联质谱(UPLC⁃QqQ⁃MS) | 适合目标分析与定量分析,灵敏度非常高 | 分辨率有限,容易受质荷比近似离子的干扰 | |
线性离子阱⁃静电场轨道阱组合式高分辨质谱(LTQ⁃Orbitrap) | 质量准确度高、分辨率高、质量动态范围较宽 | 定量能力不如QqQ,成本高 | |
离子淌度⁃四极杆飞行时间质谱联用(Vion IMS Q⁃TOF⁃MS) | 能够区分同分异构体,分离选择性增加 | 重复性稍差,价格昂贵 | |
ASAP⁃Q⁃TOF⁃MS | 样品无需前处理,可直接分析 | 灵敏度较低 | |
实时直接分析质谱(DART⁃MS) | 可对样品高通量、无损、直接分析,无需化学溶剂的消耗 | 没有分离功能 | |
液滴萃取表面分析⁃电喷雾质谱(LESA⁃ESI⁃MS) | 能够通过浸渍直接从样品表面萃取样品 | 需要溶剂,ESI容易受到离子抑制的影响 | |
显微拉曼光谱(mRaman) | 样品无需前处理、测定时间短,灵敏度较高 | 结果容易受荧光现象、光学系统参数的影响 | |
纳米颗粒 | 单粒子⁃电感耦合等离子体质谱(SP⁃ICP⁃MS) | 可进行尺寸表征和元素分析、测定颗粒数量浓度 | 不提供关于颗粒形状或直径的直接信息 |
热裂解⁃气相色谱质谱(Pyr⁃GC⁃MS) | 可实现聚合物鉴定和块状样品(半)定量 | 样品通量低,不能完全反映样品的组成和结构 | |
热萃取热脱附⁃气相色谱质谱(TED⁃GC⁃MS) | 灵敏度高 | 需根据样品中物质的类型选择合适的吸附管 |
1 | Wrona M, Nerin C. Analytical approaches for analysis of safety of modern food packaging: a review[J]. Molecules, 2020, 25(3): 752. |
2 | Commission Regulation (EU) EU. No 10/2011 of 14 january 2011 on plastic materials and articles intended to come into contact with food [S]. The European Commission: Official Journal of the European Union, 2020. |
3 | EFSA Scientific Committee. Scientific opinion on explo⁃ring options for providing advice about possible human health risks based on the concept of threshold of toxicological concern (TTC)[J]. EFSA Journal, 2012, 10(7): 2750. |
4 | 林黄静, 吴莹, 张毅兰. 三层共挤膜输液袋中抗氧剂168降解产物DBP的提取和测定[J]. 中国医药工业杂志, 2014, 45(7): 677⁃680. |
LIN H J, WU Y, ZHANG Y L. Extraction and determination of DBP degradated from irgafos 168 in three⁃layer co⁃extrusion film for infusion bag[J]. Chinese Journal of Pharmaceuticals, 2014, 45(7): 677⁃680. | |
5 | 王国军, 叶海云, 洪瑜隆, 等. HPLC测定聚丙烯餐具中12种抗氧化剂迁移量[J]. 包装工程, 2017, 38(23): 55⁃59. |
WANG G J, YE H Y, HONG Y L, et al. Migration determination of 12 antioxidants in polypropylene plastic lunch box by HPLC[J]. Packaging Engineering, 2017, 38(23): 55⁃59. | |
6 | 孙衍增, 郭兵, 王爱民, 等. 食品和药品接触材料聚丙烯中添加剂及物质迁移的液相色谱分析[J]. 食品安全质量检测学报, 2016, 7(3): 1 189⁃1 196. |
SUN Y Z, G B, WANG A M, et al. Migration of additives and substances in the contact materials propene polymer of food and drug by liquid chromatography[J]. Journal of Food Safety and Quality, 2016, 7(3): 1 189⁃1 196. | |
7 | 寇筱雪, 黄华军, 蔡汶静, 等. 食品接触材料检测技术新进展[J]. 分析测试学报, 2022, 41(3): 409⁃417. |
KOU D X, HUANG H J, CAI W J, et al. New progress on detection techniques for food contact materials[J]. Journal of Instrumental Analysis, 2022, 41(3): 409⁃417. | |
8 | Singh G, Gollapalli R, Blinder A, et al. Identification of leachable impurities in an ophthalmic drug product origina⁃ting from a polymer additive Irganox 1010 using mass spectroscopy [J]. Journal of Pharmaceutical & Biomedical Analysis, 2018, 152: 197⁃203. |
9 | 吕晓敏, 蔡翔宇, 陈璐, 等. PET/LDPE复合膜中三种抗氧剂向脂性食品模拟物的迁移研究及扩散系数估算[J]. 食品与发酵工业, 2021, 47(18): 46⁃53. |
10 | Liang R, Hu Y, Li G. Monodisperse pillar[5]arene⁃based polymeric sub⁃microsphere for on⁃line extraction coupling with high⁃performance liquid chromatography to determine antioxidants in the migration of food contact materials [J]. Journal of Chromatography A, 2020, 1625: 461276. |
11 | Issart A, Godin S, Preud'homme H, et al. Direct scree⁃ning of food packaging materials for post⁃polymerization residues, degradation products and additives by liquid extraction surface analysis nanoelectrospray mass spectrometry (LESA⁃nESI⁃MS) [J]. Analytica Chimica Acta, 2019, 1058: 117⁃126. |
12 | Du Z, Zhang Y, Li A, et al. Rapid identification of polymer additives by atmospheric solid analysis probe with quadrupole time⁃of⁃flight mass spectrometry [J]. Rapid Communications In Mass Spectrometry, 2014, 28(19): 2 035⁃2 042. |
13 | Schmid P, Welle F. Chemical migration from beverage packaging materials⁃A review[J]. Beverages, 2020, 6(2): 37. |
14 | 周松华, 林勤保, 李波, 等. 气相色谱⁃质谱联用检测聚丙烯食品包装材料中的18种有毒有害物质[J].包装与食品机械, 2015, 33(1): 56⁃62. |
ZHOU S H, LIN Q B, LI B, et al. Determination of 18 substances in polypropylene food packaging materials | |
by gas chromatography⁃mass spectrometry[J]. Packaging Food Machinery, 2015, 33(1): 56⁃62. | |
15 | 周松华. 聚氨酯粘合剂和聚丙烯食品包装材料中有害物质的检测与迁移研究[D]. 太原:山西大学, 2015. |
16 | 李河. 塑料食品包装材料中增塑剂、抗氧化剂及金属钛的测定与迁移研究[D]. 太原:山西大学, 2014. |
17 | 张云. 基于色谱质谱技术的食药塑料包装材料中添加剂的分析及其迁移行为的研究[D]. 北京:北京化工大学, 2017. |
18 | Nerin C, Alfaro P, Aznar M, et al. The challenge of identifying non⁃intentionally added substances from food packaging materials: A review[J]. Analytica Chimica Acta, 2013, 775: 14⁃24. |
19 | Bauer A, Jesus F, Gomez Ramos M J, et al. Identification of unexpected chemical contaminants in baby food coming from plastic packaging migration by high resolution accurate mass spectrometry[J]. Food Chemistry, 2019, 295: 274⁃288. |
20 | Onghena M, Van Hoeck E, Van Loco J, et al. Identification of substances migrating from plastic baby bottles using a combination of low⁃resolution and high⁃resolution mass spectrometric analysers coupled to gas and liquid chromatography[J]. Journal of Mass Spectrometry, 2015, 50(11): 1 234⁃1 244. |
21 | Gómez Ramos M J, Lozano A, Fernández⁃Alba A R. High⁃resolution mass spectrometry with data independent acquisition for the comprehensive non⁃targeted analysis of migrating chemicals coming from multilayer plastic packa⁃ging materials used for fruit purée and juice[J]. Talanta, 2019, 191: 180⁃192. |
22 | Úbeda S, Aznar M, Vera P, et al. Overall and specific migration from multilayer high barrier food contact mate⁃rials⁃kinetic study of cyclic polyester oligomers migration[J]. Food Additives & Contaminants: Part A, 2017, 34(10): 1 784⁃1 794. |
23 | Tsochatzis E D, Alberto Lopes J, Kappenstein O, et al. Quantification of PET cyclic and linear oligomers in teabags by a validated LC⁃MS method ⁃In silico toxicity assessment and consumer’s exposure [J]. Food Chemistry, 2020, 317: 126427. |
24 | Gelbke H P, Banton M, Block C, et al. Risk assessment for migration of styrene oligomers into food from polystyrene food containers[J]. Food And Chemical Toxicology, 2019, 124: 151⁃167. |
25 | Pietropaolo E, Albenga R, Gosetti F, et al. Synthesis, identification and quantification of oligomers from polyester coatings for metal packaging[J]. Journal of Chromatography A, 2018, 1578: 15⁃27. |
26 | Osorio J, Aznar M, Nerín C. Identification of key odorant compounds in starch⁃based polymers intended for food contact materials[J]. Food Chemistry, 2019, 285: 39⁃45. |
27 | 叶智康, 曾莹, 林勤保, 等. 基于SPME/GC × GC⁃QTOF MS法测定回收PET中的挥发性有机物[J]. 分析测试学报, 2021, 40(11): 1 596⁃1 603. |
YE Z K, ZENG Y, LIN Q B, et al. Determination of volatile organic compounds in recycled polyethylene | |
terephthalate by SPME/GC × GC⁃QTOF MS[J]. Journal of Instrumental Analysis, 2021, 40(11): 1 596⁃1 603. | |
28 | 周良春, 张晓飞, 马俊辉, 等. 顶空气相色谱法测定食品接触用聚苯乙烯塑料中11种挥发性有机物[J].分析仪器, 2018,6: 27⁃33. |
ZHOU L C, ZHANG X F, MA J H, et al. Determination of 11 VOCs in polystyrene plastics used as food contact material by headspace gas chromatography with FID[J]. Anal. Instrumentation, 2018, 6: 27⁃33. | |
29 | Zhu X, Ma H, Zhu X, et al. Determination of 67 volatile organic compounds in ambient air using thermal desorption⁃gas chromatography⁃mass spectrometry[J]. Chinese Journal of Chromatography, 2019, 37(11): 1 228⁃1 234. |
30 | Zhu D, Ren X, Wei L, et al. Collaborative analysis on difference of apple fruits flavour using electronic nose and electronic tongue[J]. Scientia Horticulturae, 2020, 260: 108879. |
31 | 马宁宁, 陈燕芬, 钟怀宁, 等. 食品接触材料中挥发性气味物质分析技术的研究进展[J]. 食品安全质量检测学报, 2020, 11(4): 1 005⁃1 013. |
MA N N, CHEN Y F, ZHONG H N, et al. Research progress on analysis technology of volatile odorant substances in food contact materials[J]. Journal of Food Safety and Quality, 2020, 11(4): 1 005⁃1 013. | |
32 | Velimirovic M, Tirez K, Verstraelen S, et al. Mass spectrometry as a powerful analytical tool for the characterization of indoor airborne microplastics and nanoplastics[J]. Journal of Analytical Atomic Spectrometry, 2021, 36(4): 695⁃705. |
33 | Laborda F, Trujillo C, Lobinski R. Analysis of microplastics in consumer products by single particle⁃inductively coupled plasma mass spectrometry using the carbon-13 isotope[J]. Talanta, 2021, 221: 121486. |
34 | Sullivan G L, Gallardo J D, Jones E W, et al. Detection of trace sub⁃micron (nano) plastics in water samples using pyrolysis⁃gas chromatography time of flight mass spectrometry (PY⁃GCToF)[J]. Chemosphere, 2020, 249: 126179. |
35 | de la Calle I, Menta M, Klein M, et al. Study of the pre⁃sence of micro⁃ and nanoparticles in drinks and foods by multiple analytical techniques[J]. Food Chemistry, 2018, 266: 133⁃145. |
36 | Pu C, Zhao H, Hong Y, et al. Facile preparation of hydrophilic mesoporous metal⁃organic framework via synergistic etching and surface functionalization for glycopeptides analysis[J]. Analytical Chemistry, 2020, 92(2): 1 940⁃1 947. |
37 | Pu C, Zhao H, Hong Y, et al. Hierarchical dendritic mesoporous TiO2 nanocomposites for highly selective enrichment of endogenous phosphopeptides[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(17): 5 818⁃5 826. |
38 | Su Q Z, Vera P, Van de Wiele C, et al. Non⁃target screening of (semi⁃)volatiles in food⁃grade polymers by comparison of atmospheric pressure gas chromatography quadrupole time⁃of⁃flight and electron ionization mass spectrometry[J]. Talanta, 2019, 202: 285⁃296. |
39 | Chang J Y, Xiao N J, Zhu M, et al. Leachables from saline⁃containing IV bags can alter therapeutic protein proper⁃ties[J]. Pharmaceutical Research, 2010, 27(11): 2 402⁃2 413. |
40 | Wrona M, Salafranca J, Nerín C. Fast assessment of oxo⁃biodegradable polyethylene film oxidation by surface⁃enhanced Raman scattering with in situ formation of a silver nanoparticle substrate[J]. Journal of Materials Chemistry C, 2017, 5(2): 463⁃469. |
41 | Issart A, Godin S, Preud'homme H, et al. Direct scree⁃ning of food packaging materials for post⁃polymerization residues, degradation products and additives by liquid extraction surface analysis nanoelectrospray mass spectrometry (LESA⁃nESI⁃MS)[J]. Analytica Chimica Acta, 2019, 1 058: 117⁃126. |
42 | Aznar M, Alfaro P, Nerín C, et al. Progress in mass spectrometry for the analysis of set⁃off phenomena in plastic food packaging materials[J]. Journal of Chromatography A, 2016, 1 453: 124⁃133. |
43 | Pouech C, Lafay F, Wiest L, et al. Monitoring the extraction of additives and additive degradation products from polymer packaging into solutions by multi⁃residue method including solid phase extraction and ultra⁃high performance liquid chromatography⁃tandem mass spectrometry analysis[J]. Analytical and Bioanalytical Chemistry, 2014, 406(5): 1 493⁃1 507. |
44 | Otoukesh M, Nerín C, Aznar M, et al. Determination of adhesive acrylates in recycled polyethylene terephthalate by fabric phase sorptive extraction coupled to ultra performance liquid chromatography ⁃ mass spectrometry[J]. Journal of Chromatography A, 2019, 1 602: 56⁃63. |
45 | Eckardt M, Kubicova M, Simat T J. Universal response quantification approach using a corona charged aerosol detector (CAD)⁃Application on linear and cyclic oligomers extractable from polycondensate plastics polyesters, polyamides and polyarylsulfones[J]. Journal of Chromatography A, 2018, 1 572: 187⁃202. |
46 | Jenke D, Odufu A. Utilization of internal standard response factors to estimate the concentration of organic compounds leached from pharmaceutical packaging systems and application of such estimated concentrations to safety assessment [J]. Journal of Chromatographic Scien⁃ce, 2012, 50(3): 206⁃212. |
47 | Almeling S, Ilko D, Holzgrabe U. Charged aerosol detection in pharmaceutical analysis[J]. Journal of Pharmaceutical and Biomedical Analysis, 2012, 69: 50⁃63. |
48 | Sica V P, Mahony C, Baker T R. Multi⁃detector characterization of grape seed extract to enable in silico safety assessment[J]. Frontiers in Chemistry, 2018, 6: 334. |
[1] | 任平, 赵洁, 居莹, 王玉, 沈康俊, 刘曙. 食品接触材料中初级芳香胺的迁移风险与法规管控[J]. 中国塑料, 2022, 36(2): 139-146. |
[2] | 姚逸, 张尔杰, 卢昌利, 王超军, 焦建, 曾祥斌. 食品接触法规对PBS发展的影响浅析[J]. 中国塑料, 2022, 36(10): 125-130. |
[3] | 邓玉明, 唐蕾, 罗世鹏. 超高效液相色谱⁃四极杆⁃飞行时间质谱对含PET食品接触材料中可迁移非挥发性物质的筛查研究[J]. 中国塑料, 2022, 36(10): 131-137. |
[4] | 任照芳, 李丹, 潘静静, 钟怀宁, 王亮. 可持续发展背景下我国食品接触用再生塑料的机遇与挑战[J]. 中国塑料, 2021, 35(8): 30-36. |
[5] | 周迎鑫, 翁云宣, 黄志刚, 王蕾, 刁晓倩, 宋鑫宇. 国内外食品接触塑料材料及制品法规、标准分析[J]. 中国塑料, 2020, 34(12): 70-76. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||