1 |
Yi Jing Chan, Mei Fong Chong, Chung Lim Law, et al. A review on anaerobic⁃aerobic treatment of industrial and municipal wastewater[J]. Chemical Engineering Journal, 2009, 155:1⁃18.
|
2 |
Chen Peng⁃Cheng, Xu Zhi⁃Kang. Mineral⁃coated polymer membranes with superhydrophilicity and underwater superoleophobicity for effective oil/water separation[J]. Scientific Reports, 2013, 3: 2 776.
|
3 |
Li Bucheng, Wu Lei, Li Lingxiao, et al. Superwetting double⁃layer polyester materials for effective removal of both insoluble oils and soluble dyes in water[J]. ACS Applied Materials & Interfaces, 2014, 6: 11 581⁃11 588..
|
4 |
Johanna Aurell, Gullett Brian K. Aerostat sampling of PCDD/PCDF emissions from the Gulf oil spill in situ burns[J]. Environmental Science & Technology, 2010, 44: 9 431⁃9 437.
|
5 |
Shen T. It′s all caused by oil spills⁃The most serious series of offshore oil spills in history[J] . Ocean. World,2010, 7:28⁃31.
|
6 |
Jin Meihua, Wang Jing, Yao Xi, et al. Underwater oil capture by a three⁃dimensional network architectured organosilane surface[J]. Advanced Materials (Deerfield Beach, Fla.),2011, 23:2 861⁃2 864.
|
7 |
Besharati Fard Moein, Donya Hamidi, Javad Alavi, et al. Saline oily wastewater treatment using Lallemantia mucilage as a natural coagulant: Kinetic study, process optimization, and modeling[J]. Industrial Crops & Products, 2021, 163: 113326.
|
8 |
Aisien F A, Hymore F K, Ebewele R O. Potential application of recycled rubber in oil pollution control[J]. Environmental Monitoring and Assessment, 2003, 85: 175.
|
9 |
Yang Jing Y, Yan Liang, Li Shao P, et al. Treatment of aging oily wastewater by demulsification/flocculation[J]. Journal of Environmental Science and Health. Part A, To⁃xic/Hazardous Substances & Environmental Engineering, 2016, 51: 798⁃804.
|
10 |
Ge Jin, Shi Lu⁃An, Wang Yong⁃Chao, et al. Joule⁃heated graphene⁃wrapped sponge enables fast clean⁃up of viscous crude⁃oil spill[J]. Nature Nanotechnology, 2017, 12:434⁃440.
|
11 |
Cheryan, M, Rajagopalan N.Membrane processing of oily streams. Wastewater treatment and waste reduction[J]. Membr Sci, 2015, 151:13⁃28.
|
12 |
Rubí H, Fall C, Ortega R E. Pollutant removal from oily wastewater discharged from car washes through sedimentation⁃coagulation[J]. Water Sci Technol, 2009, 59:2 359⁃2 369.
|
13 |
Zhu Shanshan, Xiang Qingchun, Ma Chunyan, et al. Continuous electrocoagulation degradation of oily wastewater with Fe78Si9B13 amorphous ribbons[J]. Ecology, Environment & Conservation, 2020,27:40 101⁃40 108.
|
14 |
Salahi A, Mohammadi T. Experimental investigation of oily wastewater treatment using combined membrane systems[J]. Water Science and Technology: a Journal of the International Association on Water Pollution Research, 2010, 62:245.
|
15 |
Wang Qianqian, Wang Hanghua, Xiong Sen, et al. Extremely efficient and recyclable absorbents for oily pollutants enabled by ultrathin⁃layered functionalization[J]. ACS Applied Materials & Interfaces, 2014, 6: 18 816⁃18 823.
|
16 |
Michael Nosonovsky, Bharat Bhushan. Biomimetic superhydrophobic surfaces: multiscale approach[J]. Nano Letters, 2007, 7(9): 2 633⁃2 637.
|
17 |
Patankar Neelesh A. Mimicking the lotus effect: influence of double roughness structures and slender pillars[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2004, 20(19): 8 209⁃8 213.
|
18 |
Parsaie Aliasghar, Mohammadi⁃Khanaposhtani Mohammad, Riazi Masoud, et al. Magnesium stearate⁃coated superhydrophobic sponge for oil/water separation: Synthesis, properties, application[J]. Separation and Purification Technology, 2020, 251: 117105.
|
19 |
Steven Zeng Zhi⁃wei, Spencer E Taylor. Facile preparation of superhydrophobic melamine sponge for efficient underwater oil⁃water separation[J]. Separation and Purification Technology, 2020, 247: 116996.
|
20 |
Zhang Ziyan, Liu Hai, Qiao Weichuan. Reduced graphene⁃based superhydrophobic sponges modified by hexadecyltrimethoxysilane for oil adsorption[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 589: 124433.
|
21 |
周 龙, 杜国勇, 邓春萍. 氧化石墨烯纳米流体的制备及热性能研究[J]. 化工新型材料, 2022,50(10):160⁃166.
|
|
ZHOU L DU GY, DENG C P. Preparation and thermal properties of graphite oxide nanofluids [J]. New Chemical Materials, 2022,50 (10): 160⁃166.
|
22 |
侯绍行,王峰会,黄建业,等.荷叶在水下的超疏水状态的寿命测试与分析[J].科学通报,2016,61(07):735⁃739.
|
|
HOU S X, WANG F H, HUANG J Y, et al. Life test and analysis of lotus leaves in super⁃hydrophobic state under water [J]. Science Bulletin, 2016,61 (07): 735⁃739.
|
23 |
Patankar N A. Transition between superhydrophobic states on rough surfaces[J]. Langmuir, 2004, 20(17): 7 097⁃7 102.
|
24 |
Xie J, Zhang J, Zhang X, et al. Durable multifunctional superhydrophobic sponge for oil/water separation and adsorption of volatile organic compounds[J]. Research on Chemical Intermediates, 2020, 46(9): 4 297⁃4 309.
|
25 |
Tang L, Wang G, Zeng Z, et al.Three⁃dimensional adsorbent with pH induced superhydrophobic and superhydrophilic transformation for oil recycle and adsorbent regeneration[J]. Journal of Colloid and Interface Science, 2020, 575: 231⁃244.
|
26 |
Pham V H, Dickerson J H. Superhydrophobic silanized melamine sponges as high efficiency oil absorbent materials[J]. ACS Applied Materials & Interfaces, 2014, 6 (16): 14 181⁃14 188.
|
27 |
Devallencourt C, Saiter J M, Fafet A, et al. Thermogravimetry/Fourier transform infrared coupling investigations to study the thermal stability of melamine formaldehyde resin[J]. Thermochimica Acta, 1995, 259 (1): 143⁃151.
|
28 |
Liu H, Geng B, Chen Y, et al. Review on the aerogel⁃type oil sorbents derived from nanocellulose[J]. ACS Sustainable Chemistry & Engineering, 2016, 5(1): 49⁃66.
|
29 |
Zhang C, Li Y, Sun S, et al. Novel magnetic and flame⁃retardant superhydrophobic sponge for solar⁃assisted high⁃viscosity oil/water separation[J]. Progress in Organic Coatings, 2020, 139: 105369.
|