
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2024, Vol. 38 ›› Issue (1): 62-78.DOI: 10.19491/j.issn.1001-9278.2024.01.010
白皛1, 乔亮2,3, 范峻铭2,3, 闻炯明4, 张毅1()
收稿日期:
2023-07-12
出版日期:
2024-01-26
发布日期:
2024-01-22
通讯作者:
张毅(1988—),副教授,博士,主要从事聚乙烯燃气管道损伤失效分析、寿命预测及高分子聚合物损伤失效机理与表征研究,zhangyi@upc.edu.cn基金资助:
BAI Xiao1, QIAO Liang2,3, FAN Junming2,3, WEN Jiongming4, ZHANG Yi1()
Received:
2023-07-12
Online:
2024-01-26
Published:
2024-01-22
Contact:
ZHANG Yi
E-mail:zhangyi@upc.edu.cn
摘要:
综述了材料微观结构和外部环境对Ⅳ型气瓶塑料内胆氢渗透特性的影响,归纳总结了聚合物内胆的氢渗透机理;详细分析了内胆屈曲塌陷和屈服起泡的相关研究进展;指出了目前国内外研究存在的不足,并对未来的研究方向作出展望。
中图分类号:
白皛, 乔亮, 范峻铭, 闻炯明, 张毅. Ⅳ型储氢气瓶塑料内胆氢渗透特性及失效分析研究进展[J]. 中国塑料, 2024, 38(1): 62-78.
BAI Xiao, QIAO Liang, FAN Junming, WEN Jiongming, ZHANG Yi. Research progress in hydrogen permeation characteristics and failure analysis of plastic liner of type IV hydrogen storage vessel[J]. China Plastics, 2024, 38(1): 62-78.
影响因素 | 影响规律 |
---|---|
聚合物类型 | 自由体积多的材料其氢渗透性更高,一般认为弹性体材料高于热塑性材料。 |
侧链结构 | 从侧链本身考虑,侧链密度越大,氢渗透性越高,而侧链长度的影响不明显;从侧链基团考虑,极性越弱、体积越小、对称性越差的基团其氢渗透性越高。 |
密度 | 密度越小,材料氢渗透性越高。 |
结晶度 | 同种材料结晶度越小,氢渗透性越高。 |
聚合物分子量及尺寸 | 聚合物分子量和尺寸越大,氢渗透性更高。 |
取向 | 不发生取向的聚合物氢渗透性更高。 |
交联度 | 交联度越大,则材料自由体积的孔径越小,氢渗透性越低;交联度越大,会引入更多的自由体积,氢渗透性越高。 |
添加剂 | 改性增加了材料结构的复杂程度,延长了氢气分子的扩散路径,使材料氢渗透性降低;填料的不均匀分布导致材料内部产生较大的空隙和团聚现象,加速氢气分子扩散,使材料氢渗透性增加。 |
温度 | 低温环境下,材料脆性增加,氢渗透性增加;Tg温度下,温度越高则氢渗透性越高,满足阿伦尼乌斯方程;Tg温度以上,温度越高则氢渗透性越高,不再满足阿伦尼乌斯方程;高温环境下,材料加速老化,氢渗透性增加。 |
压力 | 低氢压下,影响不明显;高氢压下,压力越大,氢渗透性越低。 |
循环载荷 | 在较低压力范围内,影响不明显;在高压范围内,循环次数越多,氢渗透性越低。 |
材料厚度 | 材料厚度对氢渗透性的影响很小。 |
湿度 | 吸湿性聚合物:湿度越大,氢渗透性越高;非吸湿性聚合物:影响不明显。 |
影响因素 | 影响规律 |
---|---|
聚合物类型 | 自由体积多的材料其氢渗透性更高,一般认为弹性体材料高于热塑性材料。 |
侧链结构 | 从侧链本身考虑,侧链密度越大,氢渗透性越高,而侧链长度的影响不明显;从侧链基团考虑,极性越弱、体积越小、对称性越差的基团其氢渗透性越高。 |
密度 | 密度越小,材料氢渗透性越高。 |
结晶度 | 同种材料结晶度越小,氢渗透性越高。 |
聚合物分子量及尺寸 | 聚合物分子量和尺寸越大,氢渗透性更高。 |
取向 | 不发生取向的聚合物氢渗透性更高。 |
交联度 | 交联度越大,则材料自由体积的孔径越小,氢渗透性越低;交联度越大,会引入更多的自由体积,氢渗透性越高。 |
添加剂 | 改性增加了材料结构的复杂程度,延长了氢气分子的扩散路径,使材料氢渗透性降低;填料的不均匀分布导致材料内部产生较大的空隙和团聚现象,加速氢气分子扩散,使材料氢渗透性增加。 |
温度 | 低温环境下,材料脆性增加,氢渗透性增加;Tg温度下,温度越高则氢渗透性越高,满足阿伦尼乌斯方程;Tg温度以上,温度越高则氢渗透性越高,不再满足阿伦尼乌斯方程;高温环境下,材料加速老化,氢渗透性增加。 |
压力 | 低氢压下,影响不明显;高氢压下,压力越大,氢渗透性越低。 |
循环载荷 | 在较低压力范围内,影响不明显;在高压范围内,循环次数越多,氢渗透性越低。 |
材料厚度 | 材料厚度对氢渗透性的影响很小。 |
湿度 | 吸湿性聚合物:湿度越大,氢渗透性越高;非吸湿性聚合物:影响不明显。 |
1 | 刘贵洲,窦立荣,黄永章,等.氢能利用的瓶颈分析与前景展望[J].天然气与石油,2021,39(3):1⁃9. |
LIU G Z, DOU L R, HUANG Y Z, et al. Analysis on hydrogen energy utilization bottlenecks and future prospect[J]. Natural Gas and Oil, 2021,39(3):1⁃9. | |
2 | 刘翠伟,裴业斌,韩辉,等.氢能产业链及储运技术研究现状与发展趋势[J].油气储运,2022,41(5):498⁃514. |
LIU C W, PEI Y B, HAN H, et al. Research status and development trend of hydrogen energy industry chain and the storage and transportation technologies[J]. Oil & Gas Storage and Transportation, 2022,41(5):498⁃514. | |
3 | 孟照鑫,何 青,胡华为,等.我国氢能产业发展现状与思考[J].现代化工,2022,42(1):1⁃6,12. |
MENG Z X, HE Q, HU H W, et al. Development situation and consideration of hydrogen energy industry in China[J]. Modern Chemical Industry, 2022,42(1):1⁃6,12. | |
4 | 唐辉尧,吴云兵,熊 乐,等.氢燃料电池电动汽车专用高压储氢气瓶的质量保障体系研究[J].中国汽车,2020(12):25⁃29. |
TANG H Y, WU Y B, XIONG L, et al. Research on quality assurance system of high pressure hydrogen storage cylinder for hydrogen fuel cell electric vehicle[J]. China Auto, 2020(12): 25⁃29. | |
5 | EBERMANN M, BOGENFELD R, KREIKEMEIER J, et al. Analytical and numerical approach to determine effective diffusion coefficients for composite pressure vessels[J]. Composite Structures,2022,291:115616. |
6 | AIR A, SHAMSUDDOHA M, PRUSTY B G. A review of Type V composite pressure vessels and automated fibre placement based manufacturing[J]. Composites Part B: Engineering, 2023, 253: 110573. |
7 | 杨文刚,李文斌,林 松,等.碳纤维缠绕复合材料储氢气瓶的研制与应用进展[J].复合材料科学与工程, 2015(12):99⁃104. |
YANG W G, LI W B, LIN S, et al. Research and application progress of carbon fiber composite hydrogen storage cylinder[J]. Composites Science and Engineering, 2015(12):99⁃104. | |
8 | BARTHELEMY H, WEBER M, BARBIER F. Hydrogen storage: recent improvements and industrial perspectives[J]. International Journal of Hydrogen Energy,2017,42(11):7 254⁃7 262. |
9 | 郑津洋,马 凯,叶 盛,等.我国氢能高压储运设备发展现状及挑战[J].压力容器,2022,39(3):1⁃8. |
ZHENG J Y, MA K, YE S, et al. Development status and challenges of equipment for storage and transportation of high⁃pressure gaseous hydrogen in China[J]. Pressure Vessel Technology,2022, 39(3):1⁃8. | |
10 | 秦玉琪,袁奕雯,杨振国.纤维缠绕储氢气瓶及燃料汽车应用现状综述[J].中国特种设备安全, 2019,35(2):70⁃75. |
QIN Y Q, YUAN Y W, YANG Z G, et al. Applications of the filament winding hydrogen storage tanks and hydrogen fuel cell vehicles: a review[J]. China Special Equipment Safety, 2019,35(2):70⁃75. | |
11 | 李 建,张立新,李瑞懿,等.高压储氢容器研究进展[J].储能科学与技术,2021,10(5):1835⁃1844. |
LI J, ZHANG L X, LI R Y, et al. High⁃pressure gaseous hydrogen storage vessels:Current status and prospects[J]. Energy Storage Science and Technology, 2021,10(5):1 835⁃1 844. | |
12 | 曹军文,覃祥富,耿 嘎,等.氢气储运技术的发展现状与展望[J].石油学报(石油加工),2021,37(6):1 461⁃1 478. |
CAO J W, QIN X F, GENG G, et al. Current status and prospects of hydrogen storage and transportation technology[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2021,37(6): 1 461⁃1 478. | |
13 | 武凌辉,黄强华,石凤文,等.塑料内胆碳纤维全缠绕复合气瓶的内胆材料研究进展[J].化工新型材料, 2022,50(1):262⁃265. |
WU L H, HUANG Q H, SHI F W, et al. Research progress on the inner material of carbon fiber fully⁃reinforced composite tank with plastic liner[J]. New Chemical Materials, 2022,50(1):262⁃265. | |
14 | 陈明和,胡正云,贾晓龙,等.Ⅳ型车载储氢气瓶关键技术研究进展[J].压力容器, 2020,37(11):39⁃50. |
CHEN M H, HU Z Y, JIA X L, et al. Research progress on key technologies of type IV vehicle⁃mounted hydrogen storage vessel[J]. Pressure Vessel Technology, 2020,37(11):39⁃50. | |
15 | KANG Q, KUANG J, HUA Z, et al. Study on the manufacturing and failure modes of type IV high⁃pressure hydrogen vessel liner[C]//ASME. Volume 3: Fluid⁃Structure Interaction; High Pressure Technology. United States,2022. |
16 | FOX T G, FLORY P J. Second⁃order transition temperatures and related properties of polystyrene. I. influence of molecular weight[J]. Journal of Applied Physics,1950,21(6):581⁃591. |
17 | CRANK J, PARK G S. Diffusion in polymers[M]. London and New York: Academic Press,1968,1⁃426. |
18 | KLOPFFER M H, FLACONNECHE B. Transport properties of gases in polymers: bibliographic review[J]. Oil & Gas Science and Technology⁃Revue d'IFP Energies Nouvelles, 2001, 56(3): 223⁃244. |
19 | SU Y, LV H, ZHOU W, et al. Review of the hydrogen permeability of the liner material of type IV on⁃board hydrogen storage tank[J]. World Electric Vehicle Journal,2021,12(3):130. |
20 | 赵保頔,薄 柯,古纯霖,等.车载Ⅳ型储氢气瓶塑料内胆材料氢渗透特性研究[J].中国特种设备安全, 2022,38(7):1⁃5,25. |
ZHAO B D, BO K, GU C L, et al. Analysis of hydrogen permeation characteristics of plastic liner of type IV hydrogen storage cylinder on vehicles[J]. China Special Equipment Safety, 2022, 38(7): 1⁃5,25. | |
21 | CRANK J. The mathematics of diffusion[M]. Oxford, Oxford university press,1979:44⁃68. |
22 | WANG X, TIAN M, CHEN X, et al. Advances on materials design and manufacture technology of plastic liner of type IV hydrogen storage vessel[J]. International Journal of Hydrogen Energy, 2022,47(13):8 382⁃8 408. |
23 | Kane M. Permeability, solubility, and interaction of hydrogen in polymers⁃an assessment of materials for hydrogen transport[R]. United States,2008. |
24 | ZHENG D, LI J, LIU B, et al. Molecular dynamics investigations into the hydrogen permeation mechanism of polyethylene pipeline material[J]. Journal of Molecular Liquids,2022,368B: 120773. |
25 | ZHAO J, LI X, WANG X, et al. Insights into the solubility of H2 in various polyethylene matrices at high pressure: a coarse⁃grained MC/MD study[J]. International Journal of Hydrogen Energy, 2023,48(51):19 619⁃19 632. |
26 | JUNG J K, KIM I G, KIM K T, et al. Evaluation techniques of hydrogen permeation in sealing rubber materials[J]. Polymer Testing,2021,93:107016. |
27 | JUNG J K, KIM I G, KIM K T. Evaluation of hydrogen permeation characteristics in rubbery polymers[J]. Current Applied Physics,2021,21:43⁃49. |
28 | JUNG J K, KIM I G, KIM K T, et al. Novel volumetric analysis technique for characterizing the solubility and diffusivity of hydrogen in rubbers[J]. Current Applied Physics,2021,26:9⁃15. |
29 | JUNG J K, KIM K T, CHUNG K S. Two volumetric techniques for determining the transport properties of hydrogen gas in polymer[J]. Materials Chemistry and Physics,2021,276:125364. |
30 | JUNG J K, LEE J H, JANG J S, et al. Characterization technique of gases permeation properties in polymers: H2, He, N2 and Ar gas[J]. Scientific Reports,2022,12(1):3 328. |
31 | JUNG J K, KIM I G, CHUNG K S, et al. Analyses of permeation characteristics of hydrogen in nitrile butadiene rubber using gas chromatography[J]. Materials Chemistry and Physics,2021, 267:124653. |
32 | JUNG J K, KIM G, GIM G. Determination of gas permeation properties in polymer using capacitive electrode sensors[J]. Sensors (Basel, Switzerland),2022,22(3):1 141. |
33 | JUNG J K, KIM I G, CHUNG K S, et al. Determination of permeation properties of hydrogen gas in sealing rubbers using thermal desorption analysis gas chromatography[J]. Scientific Reports,2021,11(1):17 092. |
34 | JUNG J K, BAEK U B, NAHM S H, et al. Hydrogen sorption and desorption properties in rubbery polymer[J]. Materials Chemistry and Physics,2022,279:125745. |
35 | JUNG J K, KIM K T, BAEK U B. Simultaneous three⁃channel measurements of hydrogen diffusion with light intensity analysis of images by employing webcam[J]. Current Applied Physics,2022,37:19⁃26. |
36 | JUNG K J, KIM I G, JEON S K, et al. Volumetric analysis technique for analyzing the transport properties of hydrogen gas in cylindrical⁃shaped rubbery polymers[J]. Polymer Testing,2021, 99:107147. |
37 | MACHER J, HAUSBERGER A, MACHER A E, et al. Critical review of models for H2⁃permeation through polymers with focus on the differential pressure method[J]. International Journal of Hydrogen Energy, 2021,46(43):22 574⁃22 590. |
38 | FUJIWARA H, ONO H, NISHIMURA S. Effects of fillers on the hydrogen uptake and volume expansion of acrylonitrile butadiene rubber composites exposed to high pressure hydrogen: property of polymeric materials for high pressure hydrogen devices (3)⁃[J]. International Journal of Hydrogen Energy,2022,47(7):4 725⁃4 740. |
39 | 郭淑芬,吕家龙,高智惠,等.有关非金属内胆全缠绕储氢气瓶渗透参数的探讨[J].低温与特气, 2020,38(5):16⁃18. |
GUO S F, LÜ J L, GAO Z H, et al. Discussion on permeability parameters of fully wrapped hydrogen storage cylinder with non⁃metal liner[J]. Low Temperature and Specialty Gases,2020,38(5):16⁃18. | |
40 | MENON N C, KRUIZENGA A M, ALVINE K J, et al. Behaviour of polymers in high pressure environments as applicable to the hydrogen infrastructure[C]//. ASME. Proceedings of the ASME 2016 Pressure Vessels and Piping Conference. Volume 6B: Materials and Fabrication. Vancouver, British Columbia, Canada,2016. |
41 | BARTH R R, SIMMONS K L, MARCHI C S. Polymers for hydrogen infrastructure and vehicle fuel systems: applications, properties, and gap analysis[R]. Livermore, California: Sandia National Laboratories,2013. |
42 | 刘翠伟,张睿,田磊,等.非金属管材临氢环境下相容性研究进展[J].天然气工业,2022, 42(9):145⁃156. |
LIU C W, ZHANG R, TIAN L, et al. Research progress on compatibility of non⁃metallic pipes in hydrogen environment[J]. Natural Gas Industry,2022,42(9):145⁃156. | |
43 | ZHAO J, WANG X, YANG Q, et al. Molecular dynamics simulation of H2 in amorphous polyethylene system: H2 diffusion in various PE matrices and bubbling during rapid depressurization[J]. International Journal of Hydrogen Energy,2022,47(93):39 572⁃39 585. |
44 | 舒代桂.氧化石墨烯/溴化丁基橡胶隔离结构复合材料制备及阻氢性能研究[D].绵阳:西南科技大学,2020. |
45 | KLOPFFER M H, STOLTEN D, GRUBE T, et al. Polymer pipes for distributing mixtures of hydrogen and natural gas: evolution of their transport and mechanical properties after an ageing under an hydrogen environment[C]// 18th World Hydrogen Energy Conference. Forschungszentrum,Zentralbibliothek,2010. |
46 | KLOPFFER M, BERNE P, ESPUCHE E, et al. Development of innovating materials for distributing mixtures of hydrogen and natural gas. study of the barrier properties and durability of polymer pipes[J]. Oil & Gas Science and Technology – Revue d’IFP Energies Nouvelles, 2015,70(2):305⁃315. |
47 | FUJIWARA H, ONO H, OHYAMA K, et al. Hydrogen permeation under high pressure conditions and the destruction of exposed polyethylene⁃property of polymeric materials for high⁃pressure hydrogen devices (2)⁃[J]. International Journal of Hydrogen Energy,2021,46(21):11 832⁃11 848. |
48 | KANESUGI H, OHYAMA K, FUJIWARA H, et al. High⁃pressure hydrogen permeability model for crystalline polymers[J]. International Journal of Hydrogen Energy,2023,48(2):723⁃739. |
49 | 张冬娜,丁 楠,张 兆,等.Ⅳ型瓶聚乙烯内胆材料氢渗透行为研究[J].新能源进展,2022, 10(1):15⁃19. |
ZHANG D N, DING N, ZHANG Z, et al. Hydrogen permeation behavior of polyethylene liner for type IV vessel[J]. Advances in New and Renewable Energy,2022,10(1):15⁃19. | |
50 | SUN Y, LV H, ZHOU W, et al. Research on hydrogen permeability of polyamide 6 as the liner material for type IV hydrogen storage tank[J]. International Journal of Hydrogen Energy,2020, 45(46):24 980⁃24 990. |
51 | 刘 妍,石凤文,黄强华,等.高压压缩氢气塑料内胆复合气瓶内胆选材的探讨[J].中国特种设备安全,2021,37(4):1⁃4,7. |
LIU Y, SHI F W, HUANG Q H, et al. Discussion on material selection of liner from high pressure compressed hydrogen gas cylinder[J]. China Special Equipment Safety,2021,37(4):1⁃4,7. | |
52 | MICHAELS A S, BIXLER H J. Solubility of gases in polyethylene[J]. Journal of Polymer Science,1961,50(154):393⁃412. |
53 | MICHAELS A S, PARKER R B. Sorption and flow of gases in polyethylene[J]. Journal of Polymer Science,1959,41(138):53⁃71. |
54 | MICHAELS A S, BIXLER H J. Flow of gases through polyethylene[J]. Journal of Polymer Science,1961,50(154):413⁃439. |
55 | ONO H, FUJIWARA H, NISHIMURA S. Penetrated hydrogen content and volume inflation in unfilled NBR exposed to high⁃pressure hydrogen–What are the characteristics of unfilled⁃NBR dominating them? [J]. International Journal of Hydrogen Energy,2018,43(39):18 392⁃18 402. |
56 | LIU G, YANG F, LIU W, et al. Ultra⁃high gas barrier compo⁃sites with aligned graphene flakes and polyethylene molecules for high⁃pressure gas storage tanks[J]. Journal of Energy Storage, 2021,40:102692. |
57 | 刘 国.聚乙烯基复合材料的制备及其阻气性和力学性能研究[D].北京:北京化工大学,2021. |
58 | WANG L, ZHANG J, SUN Y, et al. Green preparation and enhanced gas barrier property of rubber nanocomposite film based on graphene oxide⁃induced chemical crosslinking[J]. Polymer, 2021,225:123756. |
59 | JIANG X, YUAN X, GUO X, et al. Study on the application of Flory–Huggins interaction parameters in swelling behavior and crosslink density of HNBR/EPDM blend[J]. Fluid Phase Equilibria,2022,563:113589. |
60 | SU J, CHEN S, ZHANG J. Reinforcement of EPDM/SmBO3 and EPDM/ATO composites by three types of POE: assessment of longer chain content on crystallinity, cure, mechanical and electric properties[J]. Polymer Testing,2011,30(2):195⁃203. |
61 | 姚洪岩.侧基交联型聚酰亚胺的分子设计及功能研究[D].长春:吉林大学,2015. |
62 | WILSON M A, FRISCHKNECHT A L. High⁃pressure hydrogen decompression in sulfur crosslinked elastomers[J]. International Journal of Hydrogen Energy,2022,47(33):15 094⁃15 106. |
63 | GEORGE S C, THOMAS S. Transport phenomena through polymeric systems[J]. Progress in Polymer Science,2001,26(6):985⁃1 017. |
64 | ZHU T, ZHOU C, KABWE F B, et al. Exfoliation of montmorillonite and related properties of clay/polymer nanocomposites[J]. Applied Clay Science,2019,169:48⁃66. |
65 | CONDÉ⁃WOLTER J, RUF M G, LIEBSCH A, et al. Hydrogen permeability of thermoplastic composites and liner systems for future mobility applications[J]. Composites Part A: Applied Science and Manufacturing,2023,167:107446. |
66 | 杨小龙.Ⅳ型储氢瓶内胆材料HDPE/GO阻隔性能研究[D].北京:北京化工大学,2022. |
67 | 李永青.Ⅳ型储氢瓶内胆材料HDPE/MMT阻隔性能研究[D].北京:北京化工大学,2022. |
68 | CUI Y, KUNDALWAL S I, KUMAR S. Gas barrier performance of graphene/polymer nanocomposites[J]. Carbon,2016,98:313⁃333. |
69 | 杨小龙,李永青,闫晓堃,等.聚合物/石墨烯阻气型复合材料的研究进展[J].中国塑料,2021,35(12):145⁃153. |
YANG X L, LI Y Q, YAN X F, et al. Research progress in gas barrier polymer/graphene composites[J]. China Plastics,2021,35(12):145⁃153. | |
70 | BARRER R M. Nature of the diffusion process in rubber[J]. Nature,1937,140:106⁃107. |
71 | BARRER R M, RIDEAL E K. Permeation, diffusion and solution of gases in organic polymers[J]. Transactions of The Faraday Society,1939,35:628⁃643. |
72 | LOMAX M. Permeation of gases and vapours through polymer films and thin sheet—part I[J]. Polymer Testing,1980,1(2):105⁃147. |
73 | ROGERS C E. Permeation of gases and vapours in polymers[M]. Springer Netherlands,1985,34⁃55. |
74 | KLOPFFER M H, FLACONNÈCHE B, ODRU P. Transport properties of gas mixtures through polyethylene[J]. Plastics, Rubber and Composites,2007,36:184⁃189. |
75 | KLOPFFER M H, BERNE P, WEBER M, et al. New materials for hydrogen distribution networks: materials development & technico⁃economic benchmark[J]. Defect and Diffusion Forum,2012,323⁃325:407⁃412. |
76 | FLACONNÈCHE B, MARTIN J, KLOPFFER M H. Permeability, diffusion and solubility of gases in polyethylene, polyamide 11 and poly (vinylidene fluoride) [J]. Oil & Gas Science and Technology⁃revue De L Institut Francais Du Petrole,2001,56(3):261⁃278. |
77 | KOROS W J, PAUL D R. CO2 sorption in poly (ethylene terephthalate) above and below the glass transition[J]. Journal of Polymer Science Part B,1978,16:1 947⁃1 963. |
78 | BOWMAN A L, MUN S, NOURANIAN S, et al. Free volume and internal structural evolution during creep in model amorphous polyethylene by molecular dynamics simulations[J].Polymer, 2019,170:85⁃100. |
79 | JIA Z, LI T, CHIANG F, et al. An experimental investigation of the temperature effect on the mechanics of carbon fiber reinforced polymer composites[J]. Composites Science and Technology,2018,154:53⁃63. |
80 | MAYANDI K, RAJINI N, AYRILMIS N, et al. An overview of endurance and ageing performance under various environmental conditions of hybrid polymer composites[J]. Journal of materials research and technology,2020,9(6):15 962⁃15 988. |
81 | STERN S A, MULLHAUPT J T, GAREIS P J. The effect of pressure on the permeation of gases and vapors through polyethylene. Usefulness of the corresponding states principle[J]. Aiche Journal,1969,15:64⁃73. |
82 | STERN S A, FANG S M, FRISCH H L. Effect of pressure on gas permeability coefficients. A new application of “free volume” theory[J]. Journal of Polymer Science Part A-2: Polymer Physics,1972,10(2):201⁃219. |
83 | STERN S A, KULKARNI S S, FRISCH H L. Tests of a “free⁃volume” model of gas permeation through polymer membranes. I. Pure CO2, CH4, C2H4, and C3H8 in polyethylene[J]. Journal of Polymer Science Part B, 1983,21(3):467⁃481. |
84 | STERN S A, SAMPAT S R, KULKARNI S S, et al. Tests of a “free⁃volume” model of gas permeation through polymer membranes. II. Pure Ar, SF6, CF4, and C2H2F2 in polyethylene[J]. Journal of Polymer Science Part B, 1986,24(10):2 149⁃2 166. |
85 | KOROS W J, CHAN A H, PAUL D R. Sorption and transport of various gases in polycarbonate[J]. Journal of Membrane Science,1977,2:165⁃190. |
86 | NAITO Y, BOURBON D, TERADA K, et al. Permeation of high⁃pressure gases in poly (ethylene⁃co⁃vinyl acetate) [J]. Journal of Polymer Science Part B,1993,31(6):693⁃697. |
87 | NAITO Y, KAMIYA Y, TERADA K, et al. Pressure dependence of gas permeability in a rubbery polymer[J]. Journal of Applied Polymer Science,1996,61(6):945⁃950. |
88 | NAITO Y, MIZOGUCHI K, TERADA K, et al. The effect of pressure on gas permeation through semicrystalline polymers above the glass transition temperature[J]. Journal of Polymer Science Part B,1991,29:457⁃462. |
89 | GAY N, LAMOUCHI T, AGOSTINI F, et al. Hydrogen diffusion through polymer membranes[C]. MATEC Web of Conferences,2020,322(2):01 044. |
90 | FUJIWARA H, ONO H, ONOUE K, et al. High⁃pressure gaseous hydrogen permeation test method⁃property of polymeric materials for high⁃pressure hydrogen devices (1)⁃[J]. International Journal of Hydrogen Energy, 2020,45(53):29 082⁃29 094. |
91 | SIMMONS K L, KUANG W, BURTON S D, et al. H⁃Mat hydrogen compatibility of polymers and elastomers[J]. International Journal of Hydrogen Energy,2021,46(23):12 300⁃12 310. |
92 | ANOVITZ, M L, SMITH B L. Lifecycle Verification of Tank Liner Polymers[R]. United States,2014. |
93 | RANDHAWA K S. Hygroscopic behaviour analysis of biocompatible PA6 and PA6 composites containing oxide and nitride compounds of boron[J]. Ceramics International,2022,48(19), PartB:29 340⁃29 348. |
94 | CLAVERÍA I, ELDUQUE D, SANTOLARIA J, et al. The influence of environmental conditions on the dimensional stability of components injected with PA6 and PA66[J]. Polymer Testing, 2016,50:15⁃25. |
95 | LAUNAY A, MARCO Y, MAITOURNAM M H, et al. Modelling the influence of temperature and relative humidity on the time⁃dependent mechanical behaviour of a short glass fibre reinforced polyamide[J]. Mechanics of Materials,2013,56:1⁃10. |
96 | ARHANT M, GAC P L, GALL M L, et al. Effect of sea water and humidity on the tensile and compressive properties of carbon⁃polyamide 6 laminates[J]. Composites Part A⁃applied Science and Manufacturing,2016,91Part1:250⁃261. |
97 | KULKARNI S S, CHOI K S, SIMMONS K. Coupled Diffusion⁃Deformation⁃Damage Model for Polymers Used in Hydrogen Infrastructure[C]// ASME. Proceedings of the ASME 2022 17th International Manufacturing Science and Engineering Conference. Volume 2: Manufacturing Processes. United States,2022. |
98 | 姚嘉平,王 建,张 谦,等.Ⅳ型储氢气瓶塑料内胆的失效形式与机理[J].塑料,2023,52(1):133⁃138. |
YAO J P, WANG J, ZHANG Q, et al. Failure modes and mechanism of plastic liner of type IV hydrogen storage vessel[J]. Plastics, 2023,52(1):133⁃138. | |
99 | KULKARNI S S, CHOI K S, KUANG W, et al. Damage evolution in polymer due to exposure to high⁃pressure hydrogen gas[J]. International Journal of Hydrogen Energy,2021,46(36):19 001⁃19 022. |
100 | MELNICHUK M, THIÉBAUD F, PERREUX D. Non⁃dimensional assessments to estimate decompression failure in polymers for hydrogen systems[J]. International Journal of Hydrogen Energy,2020,45(11):6 738⁃6 744. |
101 | PEPIN J, LAINÉ E, GRANDIDIER J C, et al. Determination of key parameters responsible for polymeric liner collapse in hyperbaric type IV hydrogen storage vessels[J]. International Journal of Hydrogen Energy,2018,43(33):16 386⁃16 399. |
102 | 夏立荣.车用CNG全复合材料气瓶内胆鼓包的成因与预防[J].中国特种设备安全,2010, 26(1):59⁃60,66. |
XIA L R. Causes and prevention of liner collapse in automotive CNG fully composite material gas cylinders[J]. China Special Equipment Safety,2010, 26(1):59⁃60,66. | |
103 | 雷闽,李文春,梁勇军.车用压缩天然气全复合材料气瓶缺陷分析[J].压力容器,2010, 27(3):56⁃61. |
LEI M C, LI W C, LIANG Y J. Defect analysis on compressed natural gas all⁃composite materials cylinder[J]. Pressure Vessel Technology,2010,27(3):56⁃61. | |
104 | RUEDA F, TORRES J P, MACHADO M, et al. External pressure induced buckling collapse of high density polyethylene (HDPE) liners: FEM modeling and predictions[J]. Thin⁃Walled Structures,2015,96:56⁃63. |
105 | RUEDA F, MARQUEZ A, OTEGUI J L, et al. Buckling collapse of HDPE liners: experimental set⁃up and FEM simulations[J]. Thin⁃walled Structures,2016,109:103⁃112. |
106 | PEPIN J, LAINÉ E, GRANDIDIER J C, et al. Replication of liner collapse phenomenon observed in hyperbaric type IV hydrogen storage vessel by explosive decompression experiments[J]. International Journal of Hydrogen Energy,2018,43(9):4 671⁃4 680. |
107 | BLANC⁃VANNET P, PAPIN P E, WEBER M, et al. Sample scale testing method to prevent collapse of plastic liners in composite pressure vessels[J]. International Journal of Hydrogen Energy,2019,44(17):8 682⁃8 691. |
108 | 查 燕.Ⅳ型储氢瓶塑料内胆坍塌失稳机理数值仿真研究[D].北京:北京化工大学,2022. |
109 | YERSAK T A, BAKER D R, YANAGISAWA Y, et al. Predictive model for depressurization⁃induced blistering of type IV tank liners for hydrogen storage[J]. International Journal of Hydrogen Energy,2017,42(48):28 910⁃28 917. |
110 | YAMABE J, NISHIMURA S. Influence of fillers on hydrogen penetration properties and blister fracture of rubber composites for O⁃ring exposed to high⁃pressure hydrogen gas[J]. International Journal of Hydrogen Energy,2009,34(4):1 977⁃1 989. |
111 | YAMABE J, NISHIMURA S. Nanoscale fracture analysis by atomic force microscopy of EPDM rubber due to high⁃pressure hydrogen decompression[J]. Journal of Materials Science,2011, 46(7):2 300⁃2 307. |
112 | YAMABE J, MATSUMOTO T, NISHIMURA S. Application of acoustic emission method to detection of internal fracture of sealing rubber material by high⁃pressure hydrogen decompression[J]. Polymer Testing,2011,30(1):76⁃85. |
113 | YAMABE J, KOGA A, NISHIMURA S. Failure behavior of rubber O⁃ring under cyclic exposure to high⁃pressure hydrogen gas[J]. Engineering Failure Analysis,2013,35:193⁃205. |
114 | KOGA A, YAMABE T, SATO H, et al. A visualizing study of blister initiation behavior by gas decompression[J]. Tribology Online,2013,8(1):68⁃75. |
115 | JARAVEL J, CASTAGNET S, GRANDIDIER J C, et al. On key parameters influencing cavitation damage upon fast decompression in a hydrogen saturated elastomer[J]. Polymer Testing,2011,30(8):811⁃818. |
116 | JARAVEL J, CASTAGNET S, GRANDIDIER J, et al. Experimental real⁃time tracking and diffusion/mechanics numerical simulation of cavitation in gas⁃saturated elastomers[J]. International Journal of Solids and Structures,2013,50(9):1 314⁃1 324. |
117 | NAJIPOOR M, HAROONABADI L, DASHTI A. Assessment of failures of nitrile rubber vulcanizates in rapid gas decompression (RGD) testing: effect of physico⁃mechanical properties[J]. Polymer Testing,2018,72:377⁃385. |
118 | MELNICHUK M, GARDAVAUD Q, THIÉBAUD F, et al. Temperature effect in cavitation risk assessments of polymers for hydrogen systems[J]. International Journal of Hydrogen Energy, 2020,45(43):23 020⁃23 026. |
119 | MELNICHUK M, GARDAVAUD Q, THIÉBAUD F, et al. Numerical assestments of maximum depressurisation rate for polymer materials under high⁃pressure hydrogen[J]. International Journal of Hydrogen Energy,2021,46(53):27 088⁃27 095. |
120 | JEON S K, KWON O H, TAK N H, et al. Relationships between properties and rapid gas decompression (RGD) resistance of various filled nitrile butadiene rubber vulcanizates under high⁃pressure hydrogen[J]. Materials Today Communications,2022,30:103038. |
121 | LEFÈVRE V, RAVI⁃CHANDAR K, LOPEZ⁃PAMIES O. Cavitation in rubber: an elastic instability or a fracture phenomenon? [J]. International Journal of Fracture,2015,192(1):1⁃23. |
122 | POULAIN X, LEFÈVRE V, OSCAR L P, et al. Damage in elastomers: nucleation and growth of cavities, micro⁃cracks, and macro⁃cracks[J]. International Journal of Fracture,2017,205(1):1⁃21. |
123 | GERLAND M, BOYER S A E, CASTAGNET S. Early stages of cavitation in a stretched and decompressed poly (vinylidene fluoride) exposed to diffusive hydrogen, observed by transmission electronic microscopy at the nanoscale[J]. International Journal of Hydrogen Energy,2016,41(3):1 766⁃1 774. |
124 | OHYAMA K, FUJIWARA H, NISHIMURA S. Inhomogeneity in acrylonitrile butadiene rubber during hydrogen elimination investigated by small⁃angle X⁃ray scattering[J]. International Journal of Hydrogen Energy,2018,43(2):1 012⁃1 024. |
125 | KANE⁃DIALLO O, CASTAGNET S, NAIT⁃ALI A, et al. Time⁃resolved statistics of cavity fields nucleated in a gas⁃exposed rubber under variable decompression conditions–support to a relevant modeling framework[J]. Polymer Testing,2016,51:122⁃130. |
126 | CASTAGNET S, MELLIER D, NAIT⁃ALI A, et al. In⁃situ X⁃ray computed tomography of decompression failure in a rubber exposed to high⁃pressure gas[J]. Polymer Testing,2018,70:255⁃262. |
127 | ONO H, NAIT⁃ALI A, DIALLO O K, et al. Influence of pressure cycling on damage evolution in an unfilled EPDM exposed to high⁃pressure hydrogen[J]. International Journal of Fracture, 2018,210(2):137⁃152. |
128 | ONO H, FUJIWARA H, ONOUE K, et al. Influence of repetitions of the high⁃pressure hydrogen gas exposure on the internal damage quantity of high⁃density polyethylene evaluated by transmitted light digital image[J]. International Journal of Hydrogen Energy,2019,44(41):23 303⁃23 319. |
129 | ONO H, FUJIWARA H, ONOUE K, et al. FT⁃IR study of state of molecular hydrogen in bisphenol a polycarbonate dissolved by high⁃pressure hydrogen gas exposure[J]. Chemical Physics Letters,2020,740:137053. |
130 | FAZAL M, CASTAGNET S, NAIT⁃ALI A, et al. Local kinetics of cavitation in hydrogen⁃exposed EPDM using in⁃situ X⁃Ray tomography: focus on free surface effect and cavity interaction[J]. Polymer Testing,2020,91:106723. |
131 | BROWNELL M, FRISCHKNECHT A L, WILSON M A. Subdiffusive high⁃pressure hydrogen gas dynamics in elastomers[J]. Macromolecules,2022,55(10):3 799⁃3 800. |
132 | WILSON M, FRISCHKNECHT A, BROWNELL M. Atomistic materials modeling of high⁃pressure hydrogen interactions in ethylene propylene diene monomer (EPDM) Rubber[R]. United States,2022. |
133 | KUANG W, AREY B W, DOHNALKOVA A C, et al. Multi⁃scale imaging of high⁃pressure hydrogen induced damage in EPDM rubber using X⁃ray microcomputed tomography, helium⁃ion microscopy and transmission electron microscopy[J]. International Journal of Hydrogen Energy, 2023,48(23):8 573⁃8 587. |
[1] | 万翼, 李莉, 菊春燕, 郝雪纯, 李润. 乌鲁木齐市塑料垃圾年产量预测及影响因素分析[J]. 中国塑料, 2022, 36(4): 121-127. |
[2] | 王富玉, 郭金强, 张玉霞. 聚合物原位成纤方法及其在PP共混体系中的应用[J]. 中国塑料, 2022, 36(3): 146-156. |
[3] | 冯闯, 赵广慧. 复合材料胶接接头力学性能的研究进展[J]. 中国塑料, 2021, 35(11): 144-160. |
[4] | 李玉娥, 武志军, 胡法, 华晔, 者东梅. 塑料阻氧管材阻氧性能影响因素分析[J]. 中国塑料, 2017, 31(05): 18-21 . |
[5] | 王佳翰, 郎春燕, 陈小平. 水滑石类稳定剂热稳定效果的影响因素及其使用途径[J]. 中国塑料, 2015, 29(04): 9-13 . |
[6] | 李丽, 刘庆华. 聚合物在取向聚合物薄膜上的附生结晶研究进展[J]. 中国塑料, 2014, 28(10): 8-13 . |
[7] | 唐婷 季铁正 杜彦 李红艳. 环氧树脂基导电复合材料的PTC特性研究进展[J]. 中国塑料, 2012, 26(06): 16-21 . |
[8] | 孔娇月 陈立新 蔡聿峰. 导热高分子复合材料研究进展[J]. 中国塑料, 2011, 25(03): 7-12 . |
[9] | 马志领 卢光玉. 膨胀型阻燃剂阻燃环氧树脂的阻燃性能及影响因素[J]. 中国塑料, 2010, 24(08): 45-48 . |
[10] | 陈斌艺, 王向东. 聚丙烯/黏土纳米复合材料制备的影响因素[J]. 中国塑料, 2008, 22(08): 1-7 . |
[11] | 王萍萍, 陈晓媛, 王港, 芦艾, 张晴. 聚苯硫醚复合材料摩擦学性能主要影响因素分析[J]. 中国塑料, 2008, 22(03): 1-5 . |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||