
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2024, Vol. 38 ›› Issue (2): 70-75.DOI: 10.19491/j.issn.1001-9278.2024.02.011
马秀清1, 劳志超1, 李明谦1, 韩顺涛2(), 胡楠3(
)
收稿日期:
2023-08-01
出版日期:
2024-02-26
发布日期:
2024-02-03
通讯作者:
韩顺涛(1994—),男,助理工程师,研究方向为材料改性,hanshuntaohst@163.com
MA Xiuqing1, LAO Zhichao1, LI Mingqian1, HAN Shuntao2(), HU Nan3(
)
Received:
2023-08-01
Online:
2024-02-26
Published:
2024-02-03
Contact:
HAN Shuntao, HU Nan
E-mail:hanshuntaohst@163.com;550704188@qq.com
摘要:
采用3D打印中的熔融沉积成型(FDM)工艺制备了聚乳酸/乙烯⁃丙烯酸丁酯⁃甲基丙烯酸缩水甘油酯共聚物(PLA/PTW),通过单因素实验探究了3D打印工艺参数(喷头温度、打印平台温度和打印速度)对PLA/PTW共混物力学性能的影响,并在此基础上设计了三因素三水平正交实验,优化了3D打印的工艺参数。结果表明,共混物的冲击强度和拉伸强度均随喷头温度的增加呈现先上升后下降、均随打印平台温度的增加而增加、均随打印速度的增加出现下降的趋势。各工艺参数对PLA/PTW共混物综合力学性能的影响从大到小依次为:喷头温度、打印速度、打印平台温度,且当喷头温度为210
中图分类号:
马秀清, 劳志超, 李明谦, 韩顺涛, 胡楠. 3D打印工艺参数对PLA/PTW共混物力学性能影响的研究[J]. 中国塑料, 2024, 38(2): 70-75.
MA Xiuqing, LAO Zhichao, LI Mingqian, HAN Shuntao, HU Nan. Effect of 3D printing process parameters on mechanical properties of PLA/PTW blends[J]. China Plastics, 2024, 38(2): 70-75.
实验编号 | 实验因素及水平 | 冲击强度/ kJ·m-2 | 拉伸强度/MPa | 综合力学性能指数 | ||
---|---|---|---|---|---|---|
A | B | C | ||||
1 | 1 | 1 | 1 | 29.43 | 18.24 | 47.67 |
2 | 1 | 2 | 2 | 28.97 | 18.73 | 47.70 |
3 | 1 | 3 | 3 | 29.07 | 18.54 | 47.61 |
4 | 2 | 1 | 2 | 28.89 | 18.97 | 47.86 |
5 | 2 | 2 | 3 | 28.92 | 18.94 | 47.86 |
6 | 2 | 3 | 1 | 30.23 | 18.79 | 49.02 |
7 | 3 | 1 | 3 | 27.86 | 18.66 | 46.52 |
8 | 3 | 2 | 1 | 29.34 | 18.69 | 48.03 |
9 | 3 | 3 | 2 | 28.26 | 19.09 | 47.35 |
实验编号 | 实验因素及水平 | 冲击强度/ kJ·m-2 | 拉伸强度/MPa | 综合力学性能指数 | ||
---|---|---|---|---|---|---|
A | B | C | ||||
1 | 1 | 1 | 1 | 29.43 | 18.24 | 47.67 |
2 | 1 | 2 | 2 | 28.97 | 18.73 | 47.70 |
3 | 1 | 3 | 3 | 29.07 | 18.54 | 47.61 |
4 | 2 | 1 | 2 | 28.89 | 18.97 | 47.86 |
5 | 2 | 2 | 3 | 28.92 | 18.94 | 47.86 |
6 | 2 | 3 | 1 | 30.23 | 18.79 | 49.02 |
7 | 3 | 1 | 3 | 27.86 | 18.66 | 46.52 |
8 | 3 | 2 | 1 | 29.34 | 18.69 | 48.03 |
9 | 3 | 3 | 2 | 28.26 | 19.09 | 47.35 |
性能指标 | A | B | C |
---|---|---|---|
K1 | 47.66 | 47.35 | 48.24 |
K2 | 48.25 | 47.86 | 47.64 |
K3 | 47.30 | 47.99 | 47.33 |
R | 0.95 | 0.64 | 0.91 |
性能指标 | A | B | C |
---|---|---|---|
K1 | 47.66 | 47.35 | 48.24 |
K2 | 48.25 | 47.86 | 47.64 |
K3 | 47.30 | 47.99 | 47.33 |
R | 0.95 | 0.64 | 0.91 |
1 | Xin Wang, Man Jiang, Zhou Zuowan, et al. 3D printing of polymer matrix composites: A review and prospective[J]. Composites Part B, 2016, 110:442⁃458. |
2 | Parandoush Pedram, Dong Lin. A review on additive manufacturing of polymer⁃fiber composites[J]. Composite Structures, 2017, 182:36⁃53. |
3 | Monticeli Francisco M, Neves Roberta M, Ornaghi Heitor L . et al. A systematic review on high‐performance fiber‐reinforced 3D printed thermoset composites[J]. Polymer Composites, 2021, 42(8):3 702⁃3 715. |
4 | 顾冬冬, 张红梅, 陈洪宇, 等. 航空航天高性能金属材料构件激光增材制造[J]. 中国激光, 2020, 47(5):32⁃55. |
GU D D, ZHANG H M, CHEN H Y, et al. Laser additive manufacturing of high⁃performance metallic aerospace components[J]. Chinese Journal of Lasers, 2020, 47(5):32⁃55. | |
5 | Mohd Javaid, Abid Haleem, Singh Ravi Pratap, et al. 3D printing applications for healthcare research and development[J]. Global Health Journal, 2022, 6(4):217⁃226. |
6 | Garmabi Mohammad Moin, Peyman Shahi, Jimi Tjong, et al. 3D printing of polyphenylene sulfide for functional lightweight automotive component manufacturing through enhancing interlayer bonding[J]. Additive Manufacturing, 2022, 56:1⁃16. |
7 | Han Yilong, Yang Zhihan, Tao Ding, et al. Environmental and economic assessment on 3D printed buildings with recycled concrete[J]. Journal of Cleaner Production, 2021, 278:1⁃13. |
8 | Hao Botao, Lin Guomin. 3D printing technology and its application in industrial manufacturing[J]. IOP Conference Series: Materials Science and Engineering, 2020, 782(2):1⁃6. |
9 | 文周. 3D打印工艺参数对PLA制品弯曲性能的影响[J]. 塑料工业, 2020, 48(11):79⁃83. |
WEN Z. The influence of 3d printing process parameters on the bending performance of PLA products[J]. China Plastics Industry, 2020, 48(11):79⁃83. | |
10 | 白鹤, 苏亚辉, 王核心, 等. FDM 3D打印工艺参数对PLA制件力学性能的影响[J]. 工程塑料应用, 2020, 48(1):68⁃71. |
BAI H, SU Y H, WANG H X, et al. Influence of FDM 3D⁃printing process parameters on mechanical property of PLA sample[J]. Engineering Plastics Application, 2020, 48(1):68⁃71. | |
11 | 王晗, 杨卫民, 焦志伟, 等. FDM工艺中填充率对塑料制品力学性能的影响[J]. 塑料, 2018, 47(1):92⁃94+112. |
WANG H, YANG W M, JIAO Z W, et al. Effects of filling ratio in FDM technology on the mechanical properties of plastic products[J]. Plastics, 2018, 47(1):92⁃94+112. | |
12 | 单梦瑶, 杨操, 张世科, 等. 聚乳酸增强增韧的研究进展[J]. 高分子材料科学与工程, 2022, 38(3):183⁃190. |
SHAN M Y, YANG C, ZHANG S K, et al. Progress in reinforcing and toughening of polylactic acid[J]. Polymer Materials Science and Engineering, 2022, 38(3):183⁃190. | |
13 | Masoud Dadras Chomachayi, Jalali⁃arani Azam, Freddys R, et al. Biodegradable nanocomposites developed from PLA/PCL blends and silk fibroin nanoparticles: study on the microstructure, thermal behavior, crystallinity and performance[J]. Journal of Polymers and the Environment, 2020, 28(4):1 252⁃1 264. |
14 | Ramesh P, Durga Prasad B, Narayana K L. Influence of montmorillonite clay content on thermal, mechanical, water absorption and biodegradability properties of treated kenaf fiber/PLA⁃hybrid biocomposites[J]. Silicon, 2020, 13:109⁃118. |
15 | 郑雨欣, 黄兆阁. 聚乳酸及其共混物流变性能研究进展[J]. 上海塑料, 2022, 50(6):6⁃13. |
ZHENG Y X, HUANG Z G. Research progress on rheological properties of polylactic acid and its blends[J]. Shanghai Plastics, 2022, 50(6):6⁃13. | |
16 | 张向阳, 贾仕奎, 赵中国, 等. 3D打印用聚合物材料的研究进展[J]. 工程塑料应用, 2020, 48(5):156⁃159+165. |
ZHANG X Y, JIA S K, ZHAO Z G, et al. Research progress of polymer materials for 3D printing[J]. Engineering Plastics Application, 2020, 48(5):156⁃159+165. | |
17 | Wang Yanen, Lei Mingju, Wei Qinghua, et al. 3D printing biocompatible L⁃Arg/GNPs/PLA nanocomposites with enhanced mechanical property and thermal stability[J]. Journal of Materials Science, 2020, 55(12):5 064⁃5 078. |
18 | Shakouri Zahra, Nazockdast Hossein, Hedayatollah Sadeghi Ghari. Effect of the geometry of cellulose nanocrystals on morphology and mechanical performance of dynamically vulcanized PLA/PU blend[J]. Cellulose, 2020, 27(1):215⁃231. |
19 | 祖钰, 任亚男, 胡晶. 聚乳酸/聚(3⁃羟基丁酸⁃co-3⁃羟基戊酸酯)共混材料3D打印线材改性研究[J]. 中国塑料, 2020, 34(7):36⁃43. |
ZU Y, REN Y N, HU J, et al. Study on modification of polylactic acid/poly(3⁃hydroxybutyric acid⁃co-3⁃hydroxyvalate) blends as 3D⁃printing filament[J]. China Plastics, 2020, 34(7):36⁃43. | |
20 | 杨宏伟, 杜江华, 罗丹池, 等. 基于熔融沉积3D打印聚乳酸基复合材料的研究进展[J]. 包装工程, 2022, 43(23):159⁃166. |
YANG H W, DU J H, LUO D C, et al. Research progress on 3d printing of polylactic acid matrix composites based on melt deposition[J]. Packaging Engineering, 2022, 43(23):159⁃166. | |
21 | 黄飞鸿, 李凤红, 笪伟, 等. 3D打印聚乳酸复合材料的改性研究进展[J]. 工程塑料应用, 2022, 50(11):151⁃156. |
HUANG F H, LI F H, DA W. et al. Research progress on modification of 3d printed polylactic acid composites[J]. Engineering Plastics Application, 2022, 50(11):151⁃156. | |
22 | Xiang Lu, Wei Xiaosong, Huang Jintao. Supertoughened poly(lactic acid)/polyurethane blend material by in situ reactive interfacial compatibilization via dynamic vulcanization[J]. Industrial and Engineering Chemistry Research, 2014, 53(44):17 386⁃17 393. |
23 | Yuan Daosheng, Chen Zhonghua, Xu Chuanhui. Fully biobased shape memory material based on novel cocontinuous structure in poly(lactic acid)/natural rubber TPVs fabricated via peroxide⁃induced dynamic vulcanization and in situ interfacial compatibilization[J]. ACS Sustainable Chemistry and Engineering, 2015, 3(11):2 856⁃2 865. |
24 | Zhao Jili, Pan Hongwei, Yang Huili, et al. Study on miscibility, thermal properties, degradation behaviors, and toughening mechanism of poly(lactic acid)/poly(ethylene⁃butylacrylate⁃glycidyl methacrylate) blends[J]. International Journal of Biological Macromolecules, 2020, 143(C):443⁃452. |
25 | 陈毅非. FDM工艺参数对3D打印质量的影响[D]. 郑州:郑州大学, 2022:46⁃64. |
26 | Lan P T Huynh, Nguyen Huy A, Nguyen Huy Q, et al. Effect of process parameters on mechanical strength of fabricated parts using the fused deposition modelling method[J]. Journal of the Korean Society for Precision Engineering, 2019, 36(8):705⁃712. |
27 | 白永健, 陈赟,张思, 等. 熔融沉积成型3D打印拉丝缺陷的正交实验研究[J]. 浙江大学学报(工学版), 2022, 56(10):2 093⁃2 103. |
BAI Y J, CHEN Y, ZHANG S, et al. Orthogonal experiment of fused deposition molding 3D printing drawing defects[J]. Journal of Zhejiang University(Engineering Science), 2022, 56(10):2 093⁃2 103. | |
28 | 徐良文, 吴章平, 陈守军, 等. FDM工艺参数对PLA试件力学性能的影响[J]. 塑料工业, 2020, 48(10):92⁃96. |
XU L W, WU Z P, CHEN S J, et al. Effects of FDM 3d printing parameters on tensile properties of polylactic acid[J]. China Plastics Industry, 2020, 48(10):92⁃96. | |
29 | 郑玲, 邓鑫, 焦晓岚, 等. 基于正交试验优化PLA的3D打印工艺参数[J]. 工程塑料应用, 2021, 49(10):68⁃72+80. |
ZHENG L, DENG X, JIAO X L, et al. Optimization of 3D printing process parameters for PLA based on orthogonal experiment[J]. Engineering Plastics Application, 2021, 49(10):68⁃72+80. | |
30 | 夏新曙, 林鸿裕, 杨松伟, 等. 熔融沉积成型参数对改性聚乳酸冲击性能的影响[J]. 高分子材料科学与工程, 2019, 35(5):88⁃93. |
XIA X S, LI H Y, YANG S W, et al. Influence of fused deposition modeling processing parameters on impact properties of modified poly (lactic acid)[J]. Polymer Materials Science and Engineering, 2019, 35(5):88⁃93. |
[1] | 赵川涛, 贾志欣, 刘立君, 李继强, 张臣臣, 荣迪, 高利珍, 王少峰. 环氧树脂/碳纤维复合材料模压制品力学性能影响因素分析[J]. 中国塑料, 2024, 38(2): 26-32. |
[2] | 戚士界, 游翔宇, 王瑞晨, 周琳菲, 张慧洁. 高木质素含量聚乳酸共混材料的制备及其性能研究[J]. 中国塑料, 2024, 38(2): 45-51. |
[3] | 谭晶, 王智, 王朔, 付宏岩, 李长金, 李好义, 杨卫民, 张杨. 树枝状聚合物对聚乳酸熔体微分电纺纤维膜的增韧改性研究[J]. 中国塑料, 2024, 38(2): 7-13. |
[4] | 曾媛, 李亮, 刘威, 马晶晶, 刘让同. 海藻酸钠/聚丙烯酰胺复合水凝胶的壳聚糖增韧[J]. 中国塑料, 2024, 38(1): 42-48. |
[5] | 陈晖, 孙玲胜, 钱伟栋, 谭博. 选择性激光烧结聚醚砜树脂/碳纤维/炭黑复合材料的性能研究[J]. 中国塑料, 2023, 37(9): 14-18. |
[6] | 梅园, 李振, 徐禄波, 麻一明. 再生PCTG增韧改性再生PET的性能研究[J]. 中国塑料, 2023, 37(9): 39-43. |
[7] | 邓卫娟, 王桥, 胡伟, 杨帆, 惠湛. 缓黏结预应力钢绞线用胶黏剂配方试验研究[J]. 中国塑料, 2023, 37(9): 51-56. |
[8] | 李红波, 杨睿, 苏正涛. 不同硬质增强填料对PTFE性能的影响[J]. 中国塑料, 2023, 37(8): 13-19. |
[9] | 杜乐, 胡娅洁, 胡健, 孙滔, 云雪艳, 董同力嘎. UV固化制备聚(L⁃乳酸)/壳聚糖薄膜及其热学、力学及抑菌性能研究[J]. 中国塑料, 2023, 37(8): 38-44. |
[10] | 高海亮, 胡程, 周宇强, 刘欣, 程建明, 宋桂珍. 3D打印零件的尺寸精度及控制[J]. 中国塑料, 2023, 37(8): 79-85. |
[11] | 陈豪 吴志强 姜启运 沈春晖 高山俊. 聚乳酸/聚己二酸对苯二甲酸丁二醇酯共混发泡材料的制备及性能研究[J]. , 2023, 37(7): 1-8. |
[12] | 廉萌 童发钦 赵飞 刘军 杨永启 郑凤. 玻璃粉复合聚酰亚胺薄膜的制备及性能研究[J]. , 2023, 37(7): 47-52. |
[13] | 吴加俊 曾佳 刘缓缓 朱民 倪忠斌 施冬健 陈明清. 釜式发泡制备氢化苯乙烯-异戊二烯-苯乙烯/聚丙烯发泡珠粒及其性能研究[J]. , 2023, 37(6): 43-49. |
[14] | 郑兴博 李佳汶 李子辉 韩文娟 蒋晶 王小峰 李倩. 氮化硼改性超高分子量聚乙烯的摩擦学性能研究[J]. , 2023, 37(5): 28-33. |
[15] | 于盛睿 刘钦迪 徐磊 骆杰 吴辉庭 韩文 邹佳勇 周华民. 双面覆膜与纤维含量对MIM/IMD工艺翘曲变形及力学性能的影响[J]. , 2023, 37(5): 55-61. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||