
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2024, Vol. 38 ›› Issue (4): 92-97.DOI: 10.19491/j.issn.1001-9278.2024.04.015
收稿日期:
2023-10-31
出版日期:
2024-04-26
发布日期:
2024-04-22
通讯作者:
李玉娥(1977-),女,硕士,高级工程师,主要从事高分子材料表征及评价方法等研究,liye.bjhy@sinopec.com作者简介:
张晓伟(1992-),女,博士,工程师,主要从事高分子材料表征及评价方法等方面的研究,zhangxw.bjhy@sinopec.com
ZHANG Xiaowei(), LI Yue(
), HUA Ye, HU Fa
Received:
2023-10-31
Online:
2024-04-26
Published:
2024-04-22
Contact:
LI Yue
E-mail:zhangxw.bjhy@sinopec.com;liye.bjhy@sinopec.com
摘要:
详细总结论述了气体在高分子聚合物材料中的渗透机理,并简要介绍了有关IV型储氢瓶聚合物内衬氢气渗透性的测试方法以及国内外测试标准。基于此,进一步探讨了测试温度、测试压力以及聚合物材料性能对IV型储氢瓶内衬材料氢气渗透性的影响,并展望了未来的发展方向。
中图分类号:
张晓伟, 李玉娥, 华晔, 胡法. IV型车载储氢瓶聚合物内衬材料的氢气渗透性分析[J]. 中国塑料, 2024, 38(4): 92-97.
ZHANG Xiaowei, LI Yue, HUA Ye, HU Fa. A review on hydrogen permeability of polymer liner materials for type IV on⁃board hydrogen storage cylinders[J]. China Plastics, 2024, 38(4): 92-97.
材料 | T/K | S×10-7/ cm3⋅cm-3⋅Pa-1 | D×10-10/ m2⋅s-1 | P×10-17/ mol⋅m-1⋅s-1⋅Pa-1 |
---|---|---|---|---|
PE | 263 | 6.663 | 7.165 | 2 150 |
298 | 6.071 | 7.900 | 2 160 | |
323 | 5.701 | 11.20 | 2 870 | |
353 | 5.369 | 11.91 | 2 880 | |
PA | 263 | 3.871 | 3.031 | 528 |
298 | 3.614 | 4.314 | 702 | |
323 | 3.441 | 6.311 | 977 | |
353 | 3.292 | 7.582 | 1 123 |
材料 | T/K | S×10-7/ cm3⋅cm-3⋅Pa-1 | D×10-10/ m2⋅s-1 | P×10-17/ mol⋅m-1⋅s-1⋅Pa-1 |
---|---|---|---|---|
PE | 263 | 6.663 | 7.165 | 2 150 |
298 | 6.071 | 7.900 | 2 160 | |
323 | 5.701 | 11.20 | 2 870 | |
353 | 5.369 | 11.91 | 2 880 | |
PA | 263 | 3.871 | 3.031 | 528 |
298 | 3.614 | 4.314 | 702 | |
323 | 3.441 | 6.311 | 977 | |
353 | 3.292 | 7.582 | 1 123 |
条件 | Pe/cm3·cm·cm-2·s-1·Pa-1 |
---|---|
308 K、15 MPa | 4.31×10-14 |
308 K、43.75 MPa | 2.88×10-14 |
308 K、87.5 MPa | 2.07×10-14 |
328 K、15 MPa | 9.75×10-14 |
328 K、43.75 MPa | 7.31×10-14 |
328 K、87.5 MPa | 5.85×10-14 |
358 K、15 MPa | 3.34×10⁃13 |
358 K、43.75 MPa | 2.78×10-13 |
358 K、87.5 MPa | 2.48×10-13 |
条件 | Pe/cm3·cm·cm-2·s-1·Pa-1 |
---|---|
308 K、15 MPa | 4.31×10-14 |
308 K、43.75 MPa | 2.88×10-14 |
308 K、87.5 MPa | 2.07×10-14 |
328 K、15 MPa | 9.75×10-14 |
328 K、43.75 MPa | 7.31×10-14 |
328 K、87.5 MPa | 5.85×10-14 |
358 K、15 MPa | 3.34×10⁃13 |
358 K、43.75 MPa | 2.78×10-13 |
358 K、87.5 MPa | 2.48×10-13 |
1 | BRANDON N P, KURBAN Z. Clean energy and the hydrogen economy[J]. Philosophical transactions of the royal society a⁃mathematical physical and engineering sciences, 2017, 375(2098): 1⁃17. |
2 | RIVARD E, TRUDEAU M, ZAGHIB K. Hydrogen storage for mobility: a review[J]. Materials, 2019, 12(12): 1⁃22. |
3 | BRIOTTET L, MORO I, ESCOT M, et al. Fatigue crack initiation and growth in a CrMo steel under hydrogen pressure[J]. International Journal of Hydrogen Energy,2015, 40(47): 17 021⁃17 030. |
4 | HUA Z, ZHANG X, ZHENG J, et al. Hydrogen⁃enhanced fatigue life analysis of Cr⁃Mo steel high⁃pressure vessels[J]. International Journal of Hydrogen Energy, 2017, 42(16): 12 005⁃12 014. |
5 | ABE J O, POPOOLA A P I, AJENIFUJA E, et al. Hydrogen energy, economy and storage: Review and recommendation[J]. International Journal of Hydrogen Energy, 2019, 44(29): 15 072⁃15 086. |
6 | BARTH R R, SIMMONS K L, MARCHI C S. Polymers for hydrogen infrastructure and vehicle fuel systems: applications, properties, and gap analysis[R]. Richland, WA: Sandia National Lab, 2013: 1⁃51. |
7 | SU Y, LV H, ZHOU W, et al. Review of the hydrogen permeability of the liner material of type IV on⁃board hydrogen storage tank[J]. World Electric Vehicle Journal, 2021, 12(3): 130. |
8 | SUN Y, LV H, ZHOU W, et al. Research on hydrogen permeability of polyamide 6 as the liner material for type Ⅳ hydrogen storage tank[J]. International Journal of Hydrogen Energy, 2020, 45(46): 24 980⁃24 990. |
9 | FLACONNECHE B, MARTIN J, KLOPFFER M H. Transport properties of gases in polymers: experimental methods[J]. Oil& Gas Science and Technology⁃Revue D IFP Energies Nouvelles, 2001, 56(3): 245⁃259. |
10 | KLOPFFER M H, FLACONNèCHE B. Transport properties of gases in polymers: bibliographic review[J]. Oil & Gas Science and Technology⁃Revue D IFP Energies Nouvelles, 2001, 56(3): 223⁃244. |
11 | HUMPENODER J. Gas permeation of fibre reinforced plastics[C]. 8th International Cryogenics Materials Conference. GENEVA, SWITZERLAND: Helmholtz Association, 1998: 143⁃147. |
12 | BALASOORIYA W, CLUTE C, SCHRITTESSER B, et al. A review on applicability, limitations, and improvements of polymeric materials in high⁃pressure hydrogen gas atmospheres[J]. Polymer Reviews, 2021, 62(1): 175⁃209. |
13 | 刘冠军. 石墨烯增强聚乙烯复合材料的制备工艺与气体阻隔机理[D]. 哈尔滨: 哈尔滨工业大学, 2022. |
14 | FUJIWARA H, ONO H, OHYAMA K, et al. Hydrogen permeation under high pressure conditions and the destruction of exposed polyethylene⁃property of polymeric materials for high⁃pressure hydrogen devices (2)[J]. International Journal of Hydrogen Energy, 2021, 46(21): 11 832⁃11 848. |
15 | YAMABE J, NISHIMURA S. Influence of fillers on hydrogen penetration properties and blister fracture of rubber composites for O⁃ring exposed to high⁃pressure hydrogen gas[J]. International Journal of Hydrogen Energy, 2009, 34(4): 1 977⁃1 989. |
16 | Test Methods for Evaluating Material Compatibility in Compressed Hydrogen Applications⁃Polymers: CSA/ANSI [S]. Toronto, ON, Canada: Canadian Standards Association, 2019. |
17 | Gas Cylinders⁃Compatibility of Cylinder and Valve Materials with Gas Contents⁃Part 5: Test Methods for Evaluating Plastic Liners: [S]. Geneva, Switzerland: International Organization for Standardization, 2022. |
18 | Fully⁃Wrapped Carbon Fiber Reinforced Cylinder with a Plastic Liner for On⁃Board Storage of Compressed Hydrogen for Land Vehicles: T/CATSI 02 007: 2020 [S]. Beijing, China: China Association for Technical Supervision Information, 2020. |
19 | FANG Q, JI D. Molecular simulation of hydrogen permeation behavior in liner polymer materials of Type Ⅳ hydrogen storage vessels[J]. Materials Today Communications, 2023, 35: 106302. |
20 | GEORGE S C, THOMAS S. Transport phenomena through polymeric systems[J]. Progress in Polymer Science, 2001, 26(6): 985⁃1 017. |
21 | MAUS S, HAPKE J, RANONG C N, et al. Filling procedure for vehicles with compressed hydrogen tanks[J]. International Journal of Hydrogen Energy, 2008, 33(17): 4 612⁃4 621. |
22 | WANG G, ZHOU J, HU S, et al. Investigations of filling mass with the dependence of heat transfer during fast filling of hydrogen cylinders[J]. International Journal of Hydrogen Energy, 2014, 39(9): 4 380⁃4 388. |
23 | FLACONNèCHE B, MARTIN J, KLOPFFER M H. Permeability, diffusion and solubility of gases in polyethylene, polyamide 11 and poly(vinylidene fluoride)[J]. Oil & Gas Science and Technology⁃Revue D IFP Energies Nouvelles, 2001, 56(3): 261⁃278. |
24 | KUMAR S S, KANAGARAJ G. Investigation on mechanical and tribological behaviors of PA6 and graphite⁃reinforced pa6 polymer composites[J]. Arabian Journal for Science and Engineering, 2016, 41(11): 4 347⁃4 357. |
25 | RANE AJAY VASUDEO, ABITHA V K, UDAY V R, et al. Development in air permeability of natural rubber tire tube compound by adding variable dosage of nanoclay[J]. Macromolecular Symposia, 2016, 361(1): 34⁃41. |
26 | NAITO Y, MIZOGUCHI K, TERADA K, et al. The effect of pressure on gas permeation through semicrystalline polymers above the glass⁃transition temperature[J]. Journal of Polymer Science Part B⁃Polymer Physics, 1991, 29(4): 457⁃462. |
27 | DONG C, LIU Y, LI J, et al. Hydrogen permeability of polyamide 6 used as liner material for type IV on⁃board hydrogen storage cylinders[J]. Polymers, 2023, 15(18): 3 715. |
28 | FUJIWARA H, ONO H, ONOUE K, et al. High⁃pressure gaseous hydrogen permeation test method ⁃ property of polymeric materials for high⁃pressure hydrogen devices (1)[J]. International Journal of Hydrogen Energy, 2020, 45(53): 29 082⁃29 094. |
29 | TAKEUCHI K, KUO A T, HIRAI T, et al. Hydrogen permeation in hydrated perfluorosulfonic acid polymer membranes: effect of polymer crystallinity and equivalent weight[J]. Journal of Physical Chemistry C, 2019, 123(33): 20 628⁃20 638. |
30 | KANE M. Permeability, solubility, and interaction of hydrogen in polymers⁃an assessment of materials for hydrogen transport[R]. Savannah River Site Aiken, SC, 2008: 1⁃17. |
31 | KLOPFFER M H, BERNE P, CASTAGNET S, et al. Polymer pipes for distributing mixtures of hydrogen and natural gas: evolution of their transport and mechanical properties after an ageing under an hydrogen environment[R]. Essen, Germany: U.S. Department of Energy, 2010: 1⁃7. |
32 | YERSAK T A, BAKER D R, YANAGISAWA Y, et al. Predictive model for depressurization⁃induced blistering of type IV tank liners for hydrogen storage[J]. International Journal of Hydrogen Energy, 2017, 42(8): 28 910⁃28 917. |
33 | PEPIN J, LAINE E, GRANDIDIER J C, et al. Determination of key parameters responsible for polymeric liner collapse in hyperbaric type IV hydrogen storage vessels[J]. International Journal of Hydrogen Energy, 2018, 43(33): 16 386⁃16 399. |
34 | WANG X, TIAN M, CHEN X, et al. Advances on materials design and manufacture technology of plastic liner of type Ⅳ hydrogen storage vessel[J]. International Journal of Hydrogen Energy, 2022, 47(13): 8 382⁃8 408. |
35 | KUNZ D A, SCHMID J, FEICHT P, et al. Clay⁃based nanocomposite coating for flexible optoelectronics applying commercial polymers[J]. Acs Nano, 2013, 7(5): 4 275⁃4 280. |
36 | DEROCHER J P, GETTELFINGER B T, WANG J S, et al. Barrier membranes with different sizes of aligned flakes[J]. Journal of Membrane Science, 2005, 254(1⁃2): 21⁃30. |
37 | HABEL C, TSURKO E S, TIMMINS R L, et al. Lightweight ultra⁃high⁃barrier liners for helium and hydrogen[J]. Acs Nano, 2020, 14(6): 7 018⁃7 024. |
38 | DUNCAN T V. Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors[J]. Journal of Colloid and Interface Science, 2011, 363(1): 1⁃24. |
[1] | 李红伟, 章勇锋, 齐武军, 阮刚勇, 阮沥波, 方宇超. 聚乙烯管道及其增强复合管道在实际工程应用中的问题[J]. 中国塑料, 2023, 37(8): 69-78. |
[2] | 何安淇, 黄剑, 张莹, 孙华丽, 项爱民, 徐海云. 喷水灭火氯化聚氯乙烯管道的压力设计基础及国内外标准比较[J]. 中国塑料, 2022, 36(9): 131-139. |
[3] | 彭菁, 肖达, 吴映江, 李兵, 张龙, 李泽刚. 塑料结构壁排水管的国家与国际标准对比分析[J]. 中国塑料, 2022, 36(4): 135-141. |
[4] | 姚逸, 张尔杰, 卢昌利, 王超军, 焦建, 曾祥斌. 食品接触法规对PBS发展的影响浅析[J]. 中国塑料, 2022, 36(10): 125-130. |
[5] | 金福锦, 郝雨楠, 焦红文, 赵宏宇. 建筑绝热用石墨改性挤塑聚苯乙烯泡沫板的应用及标准解读[J]. 中国塑料, 2021, 35(9): 109-115. |
[6] | 刁晓倩, 翁云宣, 付烨, 周迎鑫. 生物降解塑料应用及性能评价方法综述[J]. 中国塑料, 2021, 35(8): 152-161. |
[7] | 李娅菲, 陈文阁, 罗少锋. 对美军重型作战车辆封套材料规范的分析研究[J]. 中国塑料, 2021, 35(6): 93-99. |
[8] | 姜红, 张岚泽, 刘津彤, 苑志豪. 基于种属差异性利用XRF对塑钢窗的分类研究[J]. 中国塑料, 2021, 35(5): 72-78. |
[9] | 施建峰, 胡安琪, 郑津洋. 聚乙烯管材标准发展现状分析[J]. 中国塑料, 2021, 35(3): 112-123. |
[10] | 李岩, 杨科杰, 张杉, 扈廷勇. GB/T 1.1—2020与GB/T 1.1—2009之间的差异[J]. 中国塑料, 2020, 34(8): 85-94. |
[11] | 胡安琪, 于发, 杨若冰, 施建峰, 崔莹, 郑津洋. 核电厂聚乙烯管道设计方法及标准简介[J]. 中国塑料, 2020, 34(3): 67-77. |
[12] | 周迎鑫, 翁云宣, 黄志刚, 王蕾, 刁晓倩, 宋鑫宇. 国内外食品接触塑料材料及制品法规、标准分析[J]. 中国塑料, 2020, 34(12): 70-76. |
[13] | 王笑妍 薛燕波 者东梅 高昂 郭若海 高静. 邻苯二甲酸酯类增塑剂概况及法规标准现状[J]. 中国塑料, 2019, 33(6): 95-105. |
[14] | 黄国家 伍振凌 利观宝 李露水 吴文栋 涂欣. 燃气管材用聚乙烯专用料的应用发展[J]. 中国塑料, 2018, 32(07): 21-27. |
[15] | 袁本海, 朱瑞霞. 美国PVC给水管材的质量控制[J]. 中国塑料, 2016, 30(08): 93-97 . |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||