1 |
魏贤华 .储能电容无机电介质薄膜研究进展[J].四川师范大学学报(自然科学版),2024,47(3):312-327.
|
|
WEI X H .Research progress of inorganic dielectric thin films for capacitive energy storage[J]. journal of Sichuan Noraml Universoty(Natural Science),2024,47(3):312-327.
|
2 |
党智敏. 干式直流电容器全链条国产化关键技术探讨 [J]. 电力电容器与无功补偿, 2024, 45(1): 1⁃4.
|
|
DANG Z M. Discussion on key technology for localization of full⁃chain of dry DC capacitor[J]. Power Capacitor & Reactive Power Compensation, 2024, 45(1): 1⁃4.
|
3 |
FAN Z J, LI L L, MEI X S,et al.Multilayer ceramic filmcapacitors for high⁃performance energy storage:progress and outlook[J].Journal of Materials Chemistry A,2021,9(15):9 462⁃9 480.
|
4 |
LIU C, LI F, MA L P, et al. Advanced materials for energy storage [J]. Advanced Materials,2010,22(8):E28.
|
5 |
任 森,庞利霞,周 迪,等.储能聚合物复合方式的研究进展[J].功能材料,2023,54(9):9 070⁃9 075.
|
|
REN S, PANG L X, ZHOU D, et al. Study of polymer and inorganic compounding methods for energy storage [J]. Journal of Functional Materials,2023,54(9):9 070⁃9 075.
|
6 |
张博钊,刘志英.聚合物基电介质薄膜电容器研究进展[J].工程塑料应用,2023,51(7):171⁃172.
|
|
ZHANG B Z, LIU Z Y. Research process in energy storage performance of polymer dielectric film capacitors [J]. Engineering Plastics Application,2023,51(7):171⁃172.
|
7 |
燕仕玉.高储能聚丙烯电容器薄膜的制备与性能研究[D]青岛:青岛科技大学,2021.
|
8 |
于 畅. 电容器BOPP薄膜电热联合老化特性研究[D].哈尔滨:哈尔滨理工大学,2024.
|
9 |
刘 强,邢照亮,周昌浩,等.电容器用BOPP薄膜及其专用树脂研究进展[J].绝缘材料,2023,56(4):1⁃3.
|
|
LIU Q, XING Z L, ZHOU C H, et al. Research progress of BOPP film and its special resin for capacitor[J]. Insulating Materials,2023,56(4):1⁃3.
|
10 |
彭 伟,吴 冬,王 霞,等.聚丙烯及其加工对电容器用BOPP薄膜性能的影响[J].化工技术与开发,2022,51(5):39⁃45.
|
|
PENG W, WU D, WANG X, et al. Influence of polypropylene and its process on properties of BOPP film for capacitors[J]. Technology & Development of Chemical Industry,2022,51(5):39⁃45.
|
11 |
高 新, 冯叶飞. BOPP电容器薄膜市场现状与展望 [J]. 塑料包装, 2015, 25(3): 6⁃8.
|
|
GAO X, FENG Y F. BOPP capacitor film market status and prospects[J].Plastics Packaging, 2015,25(3):6⁃8.
|
12 |
盖 斌,贾 华,张 腾,等.柔性直流输电用干式直流电容器工况验证试验回路研制[J]电力电容器与无功补偿,2024,45(1):169⁃174.
|
|
GAI B, JIA H, ZHANG T, et al. Research on the operating conditions verification platform of dc-link capacitor for flexible HVDC transmission [J] Power Capacitor & Reactive Power Compensation,2024,45(1):169⁃174.
|
13 |
王锦清,谢紫龙,张 琴,等.聚丙烯基介电复合材料的研究进展[J].塑料工业,2023,51(7):8⁃15.
|
|
WANG J Q, XIE Z L, ZHANG X, etal. Progress of polypropy⁃lene⁃based dielectric composite materials[J]. China Plastics Industry,2023,51(7):8⁃15.
|
14 |
王光华. 聚丙烯电工膜料技术概述及市场分析 [J]. 石化技术, 2021, 28(9): 200⁃201.
|
|
WANG G H. Technical overview and market analysis of polypropylene electrical film materials[J].Petrochemical Industry Technology, 2021,28(9):200⁃201.
|
15 |
于海楠. BOPP基复合薄膜的多层结构设计与储能性能研究[D].哈尔滨:哈尔滨理工大学,2024.
|
16 |
黄传兵,祝志东,邓兆敬.电容器薄膜用聚丙烯树脂的发展现状[J].电力电容器与无功补偿,2024,45(1):27⁃34.
|
|
HUANG C B, ZHU Z D, DENG Z J. Development status of polypropylene resin for capacitor film [J]. Power Capacitor & Reactive Power Compensation,2024,45(1):27⁃34.
|
17 |
张博钊,刘志英.聚合物基电介质薄膜电容器研究进展[J].工程塑料应用,2023,51(7):173⁃174.
|
|
ZHANG B Z, LIU Z Y. Research process in energy storage performance of polymer dielectric film capacitors [J]. Engineering Plastics Application,2023,51(7):173⁃174.
|
18 |
任 森,庞利霞,周 迪,等.储能聚合物复合方式的研究进展[J].功能材料,2023,54(9):9 076⁃9 079.
|
|
REN S, PANG L X, ZHOU D, et al. Study of polymer and inorganic compounding methods for energy storage [J]. Journal of Functional Materials,2023,54(9):9 076⁃9 079.
|
19 |
张传升,章 程,任成燕,等.聚丙烯基薄膜储能的影响机制及优化策略研究进展 [J]电工技术学报,2024,39(7):2 193⁃2 212.
|
|
ZHANG C S, ZHANG C, REN C Y, et al. Research progress on influence mechanisms and optimization strategies for energy storage in polypropylene-based films[J]. Transactions of China Electrotechnical Society,2024,39(7):2 193⁃2 212.
|
20 |
刘 强,邢照亮,周昌浩,等. 电容器用BOPP薄膜及其专用树脂研究进展[J]. 绝缘材料,2023,56(4):3⁃6.
|
|
LIU Q, XING Z L, ZHOU C H,et al. Research progress of BOPP film and its special resin for capacitor[J]. Insulating Materials,2023,56(4):3⁃6.
|
21 |
Li H, Ai D, Ren L L, et al. Scalable polymer nanocomposites with record high⁃temperature capacitive performance enabled by rationally designed nanostructured inorganic fillers[J].Adv Mater,2019, 31 :1900875.
|
22 |
Zhu Y, Zhu Y, Huang X Y, et al. High energy density polymer dielectrics interlayered by assembled boron nitride nanosheets[J]. Adv Energy Mater, 2019,9 :1901826.
|
23 |
Zhou Y, Li Q, Dang B, et al. A scalable, high⁃throughput, and environmentally benign approach to polymer dielectrics exhibiting significantly improved capacitive performance at high temperatures[J]. Adv Mater, 2018 (30) :1805672.
|
24 |
Pourrahimi A M, Hoang T A, Liu D M, et al. Hedenqvist, highly efficient interfaces in nanocomposites based on polyethylene and ZnO nano/hierarchical particles: a novel approach toward ultralow electrical conductivity insulations[J]. Adv Mater, 2016,(28): 8 651⁃8 657.
|
25 |
Gong Y, Chen D, Duan J J, et al. Largely enhanced energy density of BOPP⁃OBT@CPP⁃BOPP sandwich⁃structured dielectric composites[J].Journal of Materials Chemistry C, 2022, 10(36): 13 074⁃13 083.
|
26 |
Xi Zhang, Zhu Dongzhi, Hui You,et al. Nanocomposites prepared based on reactor granule technology[J]ACS Appl Electron Mater,2022,4:1 257⁃1 265.
|
27 |
FENG Q K, ZHONG S L, PEI J Y, et al. Recent progress and future prospects on all⁃organic polymer dielectrics for energy storage capacitors[J]. Chemical Reviews, 2022, 122(3): 3 820⁃3 878.
|
28 |
WEI J, ZHU L. Intrinsic polymer dielectrics for high energy density and low loss electric energy storage[J]. Progress in Polymer Science, 2020, 106: 101254.
|
29 |
Luo H, Zhou X, Ellingford C, et al. Interface design for high energy density polymer nanocomposites[J].Chem Soc Rev, 2019,(48) :4 424⁃4 465.
|
30 |
Wang Y, Li Y, Wang L, et al. Gradient⁃layered polymer nanocomposites with significantly improved insulation performance for dielectric energy storage[J].Energy Storage Mater,2020,24 : 626⁃634.
|
31 |
Liu H L, Du B X, Xiao M, et al. High⁃temperature performance of dielectric breakdown in BOPP capacitor film based on surface grafting[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2021, 28(4): 1 264⁃1 272.
|
32 |
Chi Q G, Wang T Q, Zhang C H, et al. Significantly improved high⁃temperature energy storage performance of commercial BOPP films by utilizing ultraviolet grafting modification[J]. iEnergy, 2022, 1(3): 374⁃382.
|
33 |
Zhou Yao, Yuan Chao, Wang Shaojie, et al.Interfacemodulated nanocomposites based on polypropylene for high⁃temperature energy storage[J]. Energy Storage Materials, 2020, 28: 255⁃257.
|
34 |
Yao Zhou, Chao Yuan, Wang Shaojie,et al.Interface⁃modulated nanocomposites based on polypropylene for high⁃temperature energy storage[J] Energy Storage Materials, 2020, 28: 258⁃260.
|
35 |
Yao Zhou, Chao Yuan, Wang Shaojie,et al. Interface⁃modulated nanocomposites based on polypropylene for high-temperature energy storage[J] .Energy Storage Materials,2020,28:261⁃263.
|
36 |
Xie Z, Liu D, Tang X,et al.Largely improved dielectric energy performances and safety of BOPP film via surface engineering e[J] Composites Science and Technology, 2023, 232: 109856⁃109856.
|
37 |
Xie Z L, Liu D Y, Tang X H, et al. Largely improved dielectric energy performances and safety of bopp film via surface engineering[J]. Composites Science and Technology, 2023, 232: 109856.
|
38 |
杜伯学, 冉昭玉, 刘浩梁, 等. 干式直流电容器聚丙烯薄膜绝缘性能及其改进方法研究进展[J]. 电工技术学报, 2022, 38(5): 1⁃11.
|
|
DU B X, RAN Z Y, LIU H L, et al. Research progress of dielectric properties and improvement methods of polypropylene film for dry-type capacitor [J]. Transactions of China Electrotechnical Society, 2022, 38(5): 1⁃11.
|
39 |
Xiong J, Fan X, Long D J, et al. Significant improvement in high⁃temperature energy storage performance of polymer dielectrics via constructing a surface polymer carrier trap layer[J]. Journal of Materials Chemistry A, 2022, 10(46):24 611⁃24 619.
|
40 |
Xiong Jie, Xing Fan, Long Dajiang,et al. Significant improvement in high⁃temperature energy storage performance of polymer dielectrics via constructing a surface polymer carrier trap layer[J]. Journal of Materials Chemistry A,2022,10(46):24 611⁃24,619.
|
41 |
Bao Z, Du X, Ding S, et al. Improved working temperature and capacitive energy density of biaxially oriented polypropylene films with alumina coating layers[J]. ACS Applied Energy Materials[J]. 2022, 5(3): 3 119⁃3 128.
|
42 |
Huang Bangdou, Yu Jiachuan, Dong Jie, et al. Improving charge storage of biaxially⁃oriented polypropylene under extreme electric fields by excimer UV irradiation[J].Advanced Materials,2024:DOI:10.1002/adma.202311713.
|
43 |
Liu Haoliang, Du Boxue, Xiao Meng. Improved energy density and charge discharge efficiency of polypropylene capacitor film based on surface grafting[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2021, 28(5): 1 539⁃1 546.
|
44 |
Yi Gong, Xu Weiping, Dong Chen. All⁃organic sandwich⁃structured BOPP/PVDF/BOPP dielectric films with significantly improved energy density and charge–discharge efficiency[J] Chemical Engineering Journal,2023 (458) :141525.
|
45 |
PEI J Y, ZHA J W, ZHOU W Y, et al. Enhancement of breakdown strength of multilayer polymer film through electric field redistribution and defect modification[J]. Applied Physics Letters, 2019,114(10): 103702.
|
46 |
Gong Yi, Chen Dong, Duan Junjin, et al. Largely enhanced energy density of BOPP⁃OBT@CPP⁃BOPP sandwich⁃structured dielectric composites[J]. Journal of Materials Chemistry C, 2022, 10(36): 13 074⁃13 083.
|
47 |
巩 艺.高储能密度BOPP基复合介电薄膜的制备及性能研究[D].北京:北京化工大学,2023.
|