
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2024, Vol. 38 ›› Issue (10): 114-121.DOI: 10.19491/j.issn.1001-9278.2024.10.020
收稿日期:
2024-01-11
出版日期:
2024-10-26
发布日期:
2024-10-21
通讯作者:
李海明(1976-),男,教授,从事生物质精炼、生物质材料、制浆造纸相关领域研究,charley1114@163.com
ZHAO Yunpu, WAN Zhouyuanye, QI Yungeng, LI Haiming()
Received:
2024-01-11
Online:
2024-10-26
Published:
2024-10-21
Contact:
LI Haiming
E-mail:charley1114@163.com
摘要:
三维(3D)打印是一种增材制造技术,已在许多领域用于制造复杂和高精度的产品。木质纤维素作为最丰富的可再生生物质资源,在制造绿色的3D打印材料方面具有巨大潜力。本文综述了木质纤维素及其衍生物在墨水直写式3D打印中的应用,并探讨了木质纤维素基3D打印材料未来面临的挑战和产业化前景。
中图分类号:
赵云浦, 万周原野, 齐云赓, 李海明. 木质纤维素及其衍生物在墨水直写式3D打印中的应用进展[J]. 中国塑料, 2024, 38(10): 114-121.
ZHAO Yunpu, WAN Zhouyuanye, QI Yungeng, LI Haiming. A review of applications of ligncellulose and its derivatives for direct ink writing 3D printing[J]. China Plastics, 2024, 38(10): 114-121.
纤维素种类 | 材料 | 打印成品 | 潜在应用 | 参考文献 |
---|---|---|---|---|
CNC | 食品原料/CNC | 固体结构 | 食品工业 | [ |
CNC/WBPUU/CaCl2 | 组织支架 | 组织工程 | [ | |
PDA/CNC/PVA | 支架 | 定向增强材料 | [ | |
MFC | PVA/MFC | 细丝 | 组织工程、包装和过滤 | [ |
BC | BC/PAA | 金字塔和飞机 | 热绝缘体 | [ |
CNF | CNF/CNT | 神经细胞支架 | 组织工程 | [ |
纤维素种类 | 材料 | 打印成品 | 潜在应用 | 参考文献 |
---|---|---|---|---|
CNC | 食品原料/CNC | 固体结构 | 食品工业 | [ |
CNC/WBPUU/CaCl2 | 组织支架 | 组织工程 | [ | |
PDA/CNC/PVA | 支架 | 定向增强材料 | [ | |
MFC | PVA/MFC | 细丝 | 组织工程、包装和过滤 | [ |
BC | BC/PAA | 金字塔和飞机 | 热绝缘体 | [ |
CNF | CNF/CNT | 神经细胞支架 | 组织工程 | [ |
纤维素衍生物种类 | 原料 | 打印 成品 | 潜在应用 | 参考文献 |
---|---|---|---|---|
纤维素醚 | CMC/ TA/HauCl4 | 细丝 | 穿戴电子设备 | [ |
CS/HEC/ MA/nano⁃TiO2 | 双层膜 | 食品保鲜 | [ | |
SF/HPC/甲基丙烯酸酐 | 支架 | 治疗软骨损伤 | [ | |
nAl/pCuO/HPMC | 细丝 | 纳米铝热剂 | [ | |
纤维素酯 | PLA/CA/MC | 支架 | 抗菌领域 | [ |
CA/乙酸乙酯 | 网 | 油水分离 | [ |
纤维素衍生物种类 | 原料 | 打印 成品 | 潜在应用 | 参考文献 |
---|---|---|---|---|
纤维素醚 | CMC/ TA/HauCl4 | 细丝 | 穿戴电子设备 | [ |
CS/HEC/ MA/nano⁃TiO2 | 双层膜 | 食品保鲜 | [ | |
SF/HPC/甲基丙烯酸酐 | 支架 | 治疗软骨损伤 | [ | |
nAl/pCuO/HPMC | 细丝 | 纳米铝热剂 | [ | |
纤维素酯 | PLA/CA/MC | 支架 | 抗菌领域 | [ |
CA/乙酸乙酯 | 网 | 油水分离 | [ |
木质素类型 | 木质素含量/% | 共混聚合物 | 交联 | 应用 | 参考文献 |
---|---|---|---|---|---|
胶体木质素颗粒 | 0.5 | CNF和海藻酸盐 | 利用Ca2+离子进行交联 | 组织工程 | [ |
碱木质素 | 38~56 | Pluronic F127 | 用PluronicF127进行交联 | 包装工程 | [ |
有机溶剂木质素 | 25 | 羟丙基纤维素 | 与二聚脂肪酸进行酯化反应 | 传感器 | [ |
有机溶剂木质素 | 50 | 羟丙基纤维素 | 与柠檬酸进行交联 | 包装 | [ |
木质素类型 | 木质素含量/% | 共混聚合物 | 交联 | 应用 | 参考文献 |
---|---|---|---|---|---|
胶体木质素颗粒 | 0.5 | CNF和海藻酸盐 | 利用Ca2+离子进行交联 | 组织工程 | [ |
碱木质素 | 38~56 | Pluronic F127 | 用PluronicF127进行交联 | 包装工程 | [ |
有机溶剂木质素 | 25 | 羟丙基纤维素 | 与二聚脂肪酸进行酯化反应 | 传感器 | [ |
有机溶剂木质素 | 50 | 羟丙基纤维素 | 与柠檬酸进行交联 | 包装 | [ |
1 | PARK S, SHOU W, MAKATURA L, et al. 3D printing of polymer composites: materials, processes, and applications [J]. Matter, 2022, 5(1): 43⁃76. |
2 | AMBROSI A, PUMERA M. 3D⁃printing technologies for electrochemical applications [J]. Chemical Society Reviews, 2016, 45(10): 2 740⁃2 755. |
3 | MA Z, XUE T, WALI Q, et al. Direct ink writing of polyimide/bacterial cellulose composite aerogel for thermal insulation [J]. Composites Communications, 2023,39:101528. |
4 | ZHANG X, MORITS M, JONKERGOUW C, et al. Three⁃dimensional printed cell culture model based on spherical colloidal lignin particles and cellulose nanofibril⁃alginate hydrogel [J]. Biomacromolecules, 2020, 21(5): 1 875⁃1 885. |
5 | GUO Z, FEI F, SONG X, et al. Analytical study and experimental verification of shear⁃thinning ink flow in direct ink writing process [J]. Journal of Manufacturing Science and Engineering, 2023, 145(7): 071001. |
6 | VALENTIN N, HUA W, KASAR A K, et al. Direct ink writing to fabricate porous acetabular cups from titanium alloy [J]. Bio⁃Design and Manufacturing, 2022, 6 (2): 121⁃135. |
7 | LIU J, SUN L, XU W, et al. Current advances and future perspectives of 3D printing natural⁃derived biopolymers [J]. Carbohydrate Polymers, 2019, 207:297⁃316. |
8 | 马明帅, 罗玉琼, 李海明. 桉木热水预水解液成分的变化规律 [J]. 大连工业大学学报, 2018, 37(4): 269⁃273. |
MA M S, LUO Y Q, LI H M. Components variations in eucalyptus hot water pre⁃hydrolysate [J].Journal of Dalian Polytechnic University, 2018, 37 (4): 269⁃273. | |
9 | 马国成, 何 圳, 陈少军. 醋酸纤维素的降解性研究进展 [J]. 中国塑料, 2022, 36(9): 111⁃121. |
MA G C, HE C, CHEN S J. Research progress in degradability of cellulose acetate [J].China Plastics, 2022, 36(9): 111⁃121. | |
10 | 张克宏, 褚承祥, 刘孝龙. 环氧树脂/纳米纤维素复合材料的制备与性能研究 [J]. 中国塑料, 2022, 36(11): 67⁃72. |
ZHANG K H, CHU C X, LIU X L. Preparation and properties of epoxy resin/cellulose nanofiber composites [J].China Plastics, 2022, 36(11): 67⁃72. | |
11 | 沈姿伶, 侯苏芸, 漆楚生. 纤维素及其衍生物在熔融沉积和墨水直写成型3D打印中的研究进展 [J]. 中国造纸, 2022, 41(2): 94⁃103. |
SHEN Z L, HOU S Y, QI C S. FDM and DIW in 3D printing with cellulose and its derivatives:a review [J]. China Pulp & Paper, 2022, 41(2): 94⁃103. | |
12 | ARMSTRONG C D, YUE L, DENG Y, et al. Enabling direct ink write edible 3D printing of food purees with cellulose nanocrystals [J]. Journal of Food Engineering, 2022, 330:111086. |
13 | VADILLO J, LARRAZA I, CALVO⁃CORREAS T, et al. Enhancing the mechanical properties of 3d⁃printed waterborne polyurethane⁃urea and cellulose nanocrystal scaffolds through crosslinking [J]. 2022, 14(22): 4 999. |
14 | WANG W, LI Y, ZHANG H, et al. Double⁃interpenetrating⁃network lignin⁃based epoxy resin adhesives for resistance to extreme environment [J]. 2022, 23(3): 779⁃788. |
15 | DIMIC⁃MISIC K, GANE P A C, PALTAKARI J. Micro⁃ and nanofibrillated cellulose as a rheology modifier additive in CMC⁃containing pigment⁃coating formulations [J]. Industrial & Engineering Chemistry Research, 2013, 52(45): 16 066⁃16 083. |
16 | SARGUR RANGANATH A, JEMINA M, NAGARAJU N, et al. Evaluating 3D⁃printability of polyvinyl alcohol (PVA) and microfibrillated cellulose (MFC) composite inks [J]. Materials Today: Proceedings, 2022, 7: 6⁃11. |
17 | KUZMENKO V, KARABULUT E, PERNEVIK E, et al. Tailor⁃made conductive inks from cellulose nanofibrils for 3D printing of neural guidelines [J]. Carbohydrate polymers, 2018, 189: 22⁃30. |
18 | 赵钱孙, 陈继飞, 吴桂峰, 等. 纤维素及其衍生物作为3D打印材料的研究综述 [J]. 中国造纸, 2022, 41(12): 127⁃134. |
ZHAO Q S, CHEN J F, WU G F, et al. Review of research on cellulose and its derivatives as 3D printing materials [J]. China Pulp & Paper, 2022, 41(12): 127⁃134. | |
19 | JIN S, KIM Y, SON D, et al. Tissue adhesive, conductive, and injectable cellulose hydrogel Ink for on⁃skin direct writing of electronics [J]. Gels, 2022, 8(6): 336. |
20 | LUO J, XIA G, LIU L, et al. Fabrication of chitosan/hydroxyethyl cellulose/TiO2 incorporated mulberry anthocyanin 3D⁃printed bilayer films for quality of litchis [J]. Foods, 2022, 11(20):3 286. |
21 | YAN K, ZHANG X, LIU Y, et al. 3D⁃bioprinted silk fibroin⁃hydroxypropyl cellulose methacrylate porous scaffold with optimized performance for repairing articular cartilage defects [J]. Materials & Design, 2023, 225: 111 531. |
22 | XU J, CHEN Y, ZHANG W, et al. Direct ink writing of nAl/pCuO/HPMC with outstanding combustion performance and ignition performance [J]. Combustion and Flame, 2022, 236: 111 747. |
23 | ZUO M, PAN N, LIU Q, et al. Three⁃dimensionally printed polylactic acid/cellulose acetate scaffolds with antimicrobial effect [J]. RSC Advances, 2020, 10(5): 2 952⁃2 958. |
24 | KOH J J, LIM G J H, ZHOU X, et al. 3D⁃printed anti⁃fouling cellulose mesh for highly efficient oil/water separation applications [J]. ACS Applied Materials & Interfaces, 2019, 11(14): 13 787⁃13 795. |
25 | 邵 惠, 孙 辉, 杨 彪, 等. 半纤维素薄膜研究新进展 [J]. 中国塑料, 2019, 33(4): 126⁃136. |
SHAO H, SUN H, YANG B,et al. Latest research progress in hemicellulose films [J]. China Plastics, 2019, 33(4): 126⁃136. | |
26 | 肖本胜, 刘 冉, 李海明. 玉米秸秆中半纤维素的碱法提取 [J]. 大连工业大学学报, 2022, 41(3): 179⁃183. |
XIAO B S, LIU R, LI H M. Alkaline extraction of hemicellulose from corn stalk [J].Journal of Dalian Polytechnic University, 2022, 41 (3): 179⁃183. | |
27 | XU W, ZHANG X, YANG P, et al. Surface engineered biomimetic inks based on UV cross⁃linkable wood biopolymers for 3D printing [J]. ACS Appl Mater Interfaces, 2019, 11(13): 12 389⁃12 400. |
28 | MELO⁃SILVEIRA R F, VIANA R L S, SABRY D A, et al. Antiproliferative xylan from corn cobs induces apoptosis in tumor cells [J]. Carbohydrate Polymers, 2019, 210: 245⁃253. |
29 | BAHçEGüL E G, BAHçEGüL E, ÖZKAN N. 3D printing of hemicellulosic biopolymers extracted from lignocellulosic agricultural wastes [J]. ACS Applied Polymer Materials, 2020, 2(7): 2 622⁃2 632. |
30 | CARTAXO DA COSTA URTIGA S, RODRIGUES MARCELINO H, SóCRATES TABOSA DO EGITO E, et al. Xylan in drug delivery: a review of its engineered structures and biomedical applications [J]. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 151:199⁃208. |
31 | YULONG W, LU H, JIA Y, et al. 3D bioprintability of konjac glucomannan hydrogel [J]. Materials Science, 2020, 26(1): 109⁃113. |
32 | DIGUMARTI K M, GOSDEN D, LE N H, et al. Toward stimuli⁃responsive soft robots with 3D printed self⁃healing konjac glucomannan gels [J]. 3D Printing and Additive Manufacturing, 2022, 9(5): 425⁃434. |
33 | QIN Z, PANG Y, LU C, et al. Photo⁃crosslinkable methacrylated konjac glucomannan (KGMMA) hydrogels as a promising bioink for 3D bioprinting [J]. Biomaterials Science, 2022, 10(22): 6 549⁃6 557. |
34 | 何 琪, 陈 凯, 万周原野, 等. 纳米木质素颗粒/海藻酸钠复合膜的制备 [J]. 大连工业大学学报,2024,43(1):16⁃20. |
HE Q, CHEN K, WAN Z Y Y,et al. Preparation of nano lignin particles/sodium alginate composite film [J].Journal of Dalian Polytechnic University, 2024,43(1):16⁃20. | |
35 | SEN S, PATIL S, ARGYROPOULOS D S. Thermal properties of lignin in copolymers, blends, and composites: a review [J]. Green Chemistry, 2015, 17(11): 4 862⁃4 887. |
36 | 姜 波, 郭新宇, 焦 欢, 等. 木质素基复合材料的直写式 3D 打印及其功能应用 [J]. 复合材料学报, 2023, 40(4): 1 913⁃1 923. |
JIANG B, GUO X Y, JIAO H,et al. Direct ink writing of lignin⁃based composites and their applications [J]. Acta Materiae Compositae Sinica, 2023, 40(4): 1 913⁃1 923. | |
37 | ROMAN J, NERI W, FIERRO V, et al. Lignin⁃graphene oxide inks for 3D printing of graphitic materials with tunable density [J]. Nano Today, 2020, 33: 100881. |
38 | JIANG B, YAO Y, LIANG Z, et al. Lignin⁃based direct ink printed structural scaffolds[J]. 2020, 16(31): 1907212. |
39 | GLEUWITZ F R, SIVASANKARAPILLAI G, SIQUEIRA G, et al. Lignin in bio⁃based liquid crystalline network material with potential for direct ink writing[J]. ACS Applied Bio Materials, 2020, 3(9): 6 049⁃6 058. |
40 | GLEUWITZ F R, FRIEDRICH C, LABORIE M⁃P G. Lignin⁃assisted stabilization of an oriented liquid crystalline cellulosic mesophase, part A: observation of microstructural and mechanical behavior [J]. Biomacromolecules, 2020, 21(3): 1 069⁃1 077. |
41 | GLEUWITZ F R, SIVASANKARAPILLAI G, CHEN Y, et al. Lignin⁃assisted stabilization of an oriented liquid crystalline cellulosic mesophase, part b: toward the molecular origin and mechanism [J]. Biomacromolecules, 2020, 21(6): 2 276⁃2 284. |
42 | EBERS L S, LABORIE M P. Direct ink writing of fully bio⁃based liquid crystalline lignin/hydroxypropyl cellulose aqueous inks: optimization of formulations and printing parameters [J]. ACS Applied Bio Materials, 2020, 3(10): 6 897⁃6 907. |
43 | BAHCEGUL E G, BAHCEGUL E, OZKAN N. 3D printing of crude lignocellulosic biomass extracts containing hemicellulose and lignin [J]. Industrial Crops and Products, 2022, 186: 115234. |
44 | ZHANG Y, JIANG M, ZHANG Y, et al. Novel lignin⁃chitosan⁃PVA composite hydrogel for wound dressing [J]. Materials Science and Engineering: C, 2019, 104: 110002. |
45 | 同丽娜, 刘 甜, 孙姣姣. 银离子抗菌敷料联合全程无缝隙护理模式对慢性感染性伤口患者愈合情况、炎性因子水平及疾病自我感受负担的影响 [J]. 临床医学研究与实践, 2023, 8(32): 149⁃152. |
TONG L N, LIU T, SUN J J. Effects of silver ion antibacterial dressing combined with whole⁃course seamless nursing mode on healing, inflammatory factors levels and disease self⁃perceived burden of patients with chronic infectious wounds [J]. Clinical Research and Practice, 2023, 8(32): 149⁃152. | |
46 | XU J, XU J J, LIN Q, et al. Lignin⁃incorporated nanogel serving as an antioxidant biomaterial for wound healing [J]. ACS Applied Bio Materials, 2021, 4(1): 3⁃13. |
47 | XU W, WANG X, SANDLER N, et al. Three⁃dimensional printing of wood⁃derived biopolymers: a review focused on biomedical applications [J]. ACS Sustainable Chemistry & Engineering, 2018, 6(5): 5 663⁃5 680. |
48 | BALAJI S, SHORT W D, PADON B W, et al. Injectable antioxidant and oxygen⁃releasing lignin composites to promote wound healing [J]. ACS Applied Materials & Interfaces, 2023, 15(15): 18 639⁃18 652. |
[1] | 曲道鹏, 张涛, 华晨曦, 宋欣雨, 程昌利, 刘禹, 王震宇. 高强电磁屏蔽环氧复合材料的3D打印工艺研究[J]. 中国塑料, 2024, 38(9): 24-29. |
[2] | 于佳滨, 王非, 石文天, 蒋雅婷. 模具的智能化制造研究进展[J]. 中国塑料, 2024, 38(7): 100-105. |
[3] | 武莉, 徐鹏武, 杨伟军, 马丕明. 聚碳酸亚丙酯/乙酰化木质素抗紫外复合材料的制备与性能研究[J]. 中国塑料, 2024, 38(7): 15-19. |
[4] | 范文轩, 徐双平, 贾宏葛, 张明宇, 蘧延庆. 刚性基团桥接聚硅氧烷/乙基纤维素混合膜的制备及其CO2的分离[J]. 中国塑料, 2024, 38(6): 51-59. |
[5] | 张华峰, 唐于婧, 杨起帆, 李书宏, 王向东. PBAT/纤维素复合材料发泡行为研究[J]. 中国塑料, 2024, 38(6): 72-77. |
[6] | 戚士界, 游翔宇, 王瑞晨, 周琳菲, 张慧洁. 高木质素含量聚乳酸共混材料的制备及其性能研究[J]. 中国塑料, 2024, 38(2): 45-51. |
[7] | 成名, 王永康, 何杰, 王如意, 向光会. 浅析注塑工艺对二醋酸纤维素力学性能的影响[J]. 中国塑料, 2024, 38(10): 81-86. |
[8] | 相利学, 唐波, 周刚, 代旭明, 王二轲, 姜涛, 吴新锋. 3D打印技术在高导热复合材料中的应用研究[J]. 中国塑料, 2023, 37(9): 125-132. |
[9] | 孙子佳, 雒翠梅, 王启航, 王旭洁, 母军. ODA⁃TA@L⁃CNC的制备及对多功能PLA复合膜的影响[J]. 中国塑料, 2023, 37(12): 14-22. |
[10] | 汪杰, 张伟蒙, 胡晶. 聚乳酸⁃羟基乙酸共聚物涂层对聚乳酸3D打印支架的性能影响[J]. 中国塑料, 2023, 37(1): 1-7. |
[11] | 马国成, 何圳, 陈少军. 醋酸纤维素的降解性研究进展[J]. 中国塑料, 2022, 36(9): 111-121. |
[12] | 张伟蒙, 汪杰, 胡晶. 3D打印骨组织支架孔隙结构对支架性能影响的研究进展[J]. 中国塑料, 2022, 36(12): 155-166. |
[13] | 张克宏, 褚承祥, 刘孝龙. 环氧树脂/纳米纤维素复合材料的制备与性能研究[J]. 中国塑料, 2022, 36(11): 67-72. |
[14] | 梁孟珂, 邱杰, 朱永晨, 田华峰, 武志鹏, 罗振扬. 锥形量热法研究木质素基膨胀型阻燃剂对环氧树脂阻燃抑烟效果[J]. 中国塑料, 2021, 35(9): 103-108. |
[15] | 顾晓华, 吕士伟, 刘思雯, 王佳佳, 康媛媛. 废旧聚氨酯硬质泡沫塑料的降解回收及再利用[J]. 中国塑料, 2021, 35(8): 105-111. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||