
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2025, Vol. 39 ›› Issue (1): 118-125.DOI: 10.19491/j.issn.1001-9278.2025.01.019
收稿日期:
2024-03-07
出版日期:
2025-01-26
发布日期:
2025-02-14
通讯作者:
田华峰(1982-),男,教授,研究方向为高分子材料加工研究,tianhuafeng@th.btbu.edu.cn作者简介:
第一联系人:地址:北京市海淀区阜成路11号《中国塑料》杂志社
WANG Yaomin1, TIAN Huafeng1(), OUYANG Yuge1, CAO Weiwei2
Received:
2024-03-07
Online:
2025-01-26
Published:
2025-02-14
Contact:
TIAN Huafeng
E-mail:tianhuafeng@th.btbu.edu.cn
摘要:
聚乙烯醇(PVA)在超分子材料研究领域具有很大的潜力。本文综述介绍了近年来PVA通过可逆共价键和可逆非共价键制备的多种不同性能的超分子材料,讨论和分析其中的分子设计、合成方法和潜在机制,最后对PVA超分子材料研究领域存在的问题进行了总结与分析,并提出建议与展望。
中图分类号:
王耀民, 田华峰, 欧阳玉阁, 曹炜炜. 聚乙烯醇超分子材料研究进展[J]. 中国塑料, 2025, 39(1): 118-125.
WANG Yaomin, TIAN Huafeng, OUYANG Yuge, CAO Weiwei. Research progress in polyvinyl alcohol supramolecular materials[J]. China Plastics, 2025, 39(1): 118-125.
1 | Ward C P, Armstrong C J, Walsh A N, et al. Sunlight converts polystyrene to carbon dioxide and dissolved organic carbon[J]. Environmental science & technology letters, 2019, 6(11): 669⁃674. |
2 | Guo P, Zhang H, Liu X, et al. Counteranion⁃mediated intrinsic healing of poly (ionic liquid) copolymers[J]. ACS applied materials & interfaces, 2018, 10(2): 2 105⁃2 113. |
3 | Houk K N, Liu F, Yang Z, et al. Evolution of the Diels–Alder reaction mechanism since the 1930s: Woodward, Houk with Woodward, and the influence of computational chemistry on understanding cycloadditions[J]. Angewandte Chemie International Edition, 2021, 60(23): 12 660⁃12 681. |
4 | Xu M M, You X Y, Zhang Y Z, et al. Enantioselective synthesis of axially chiral biaryls by Diels–Alder/Retro⁃Diels–Alder reaction of 2⁃pyrones with alkynes[J]. Journal of the American Chemical Society, 2021, 143(24): 8 993⁃9 001. |
5 | Grishin A M, Dolgova N V, Landreth S, et al. Disulfide bonds play a critical role in the structure and function of the receptor⁃binding domain of the SARS⁃CoV-2 spike antigen[J]. Journal of Molecular Biology, 2022, 434(2): 167357. |
6 | Tratnik N, Tanguy N R, Yan N. Recyclable, self⁃strengthening starch⁃based epoxy vitrimer facilitated by exchangeable disulfide bonds[J]. Chemical Engineering Journal, 2023, 451: 138610. |
7 | Shi Z, Liu J, Tian L, et al. Insights into stimuli⁃responsive diselenide bonds utilized in drug delivery systems for cancer therapy[J]. Biomedicine & Pharmacotherapy, 2022, 155: 113707. |
8 | Suzuki N, Takahashi A, Ohishi T, et al. Enhancement of the stimuli⁃responsiveness and photo⁃stability of dynamic diselenide bonds and diselenide⁃containing polymers by neighboring aromatic groups[J]. Polymer, 2018, 154: 281⁃290. |
9 | Xu Y, Li Y, Chen Q, et al. Injectable and self⁃healing chitosan hydrogel based on imine bonds: design and therapeutic applications[J]. International journal of molecular sciences, 2018, 19(8): 2 198. |
10 | Xun S, Li H, Sini G, et al. Impact of imine bond orientations on the geometric and electronic structures of imine‐based covalent organic frameworks[J]. Chemistry⁃An Asian Journal, 2021, 16(22): 3 781⁃3 789. |
11 | Robinson L L, Self J L, Fusi A D, et al. Chemical and mechanical tunability of 3D⁃printed dynamic covalent networks based on boronate esters[J]. ACS Macro Letters, 2021, 10(7): 857⁃863. |
12 | Zhang J, Cao L, Chen Y. Mechanically robust, self⁃healing and conductive rubber with dual dynamic interactions of hydrogen bonds and borate ester bonds[J]. European Polymer Journal, 2022, 168: 111103. |
13 | Song Y, Liu Y, Qi T, et al. Towards dynamic but supertough healable polymers through biomimetic hierarchical hydrogen‐bonding interactions[J]. Angewandte Chemie International Edition, 2018, 57(42): 13 838⁃13 842. |
14 | Fu D, Pu W, Escorihuela J, et al. Acylsemicarbazide moieties with dynamic reversibility and multiple hydrogen bonding for transparent, high modulus, and malleable polymers[J]. Macromolecules, 2020, 53(18): 7 914⁃7 924. |
15 | Guadagno L, Vertuccio L, Naddeo C, et al. Self⁃healing epoxy nanocomposites via reversible hydrogen bonding[J]. Composites Part B: Engineering, 2019, 157: 1⁃13. |
16 | Cheng R, Xu M, Zhang X, et al. Hydrogen bonding enables polymer hydrogels with pH‐induced reversible dynamic responsive behaviors[J]. Angewandte Chemie International Edition, 2023: e202302900. |
17 | Hei X, Liu W, Zhu K, et al. Blending ionic and coordinate bonds in hybrid semiconductor materials: a general approach toward robust and solution⁃processable covalent/coordinate network structures[J]. Journal of the American Chemical Society, 2020, 142(9): 4 242⁃4 253. |
18 | Meng P, Brock A, Wang X, et al. Competition of hydrogen bonds and coordinate bonds induces a reversible crystal transformation[J]. Inorganic Chemistry, 2022, 61(4): 2 086⁃2 092. |
19 | Tian Y, Yang J, Liu Z, et al. Multistage stimulus‐responsive room temperature phosphorescence based on host⁃guest doping systems[J]. Angewandte Chemie International Edition, 2021, 60(37): 20 259⁃20 263. |
20 | Yang J, Wu X, Shi J, et al. Achieving efficient phosphorescence and mechanoluminescence in organic host–guest system by energy transfer[J]. Advanced Functional Materials, 2021, 31(52): 2108072. |
21 | Zhang L, Zhu Q H, Zhou Y R, et al. Hydrogen⁃bonding and π⁃π interaction promoted solution⁃processable covalent organic frameworks[J]. Nature Communications, 2023, 14(1): 8181. |
22 | Wang Y, Nisbet M L, Kamp K R, et al. Beyond π⁃π stacking: understanding inversion symmetry breaking in crystalline racemates[J]. Journal of the American Chemical Society, 2023, 145(30): 16 879⁃16 888. |
23 | Boonsuk P, Sukolrat A, Kaewtatip K, et al. Modified cassava starch/poly (vinyl alcohol) blend films plasticized by glycerol: Structure and properties[J]. Journal of Applied Polymer Science, 2020, 137(26): 48848. |
24 | Marín Cardona E S, Rojas Camargo J, Ciro Monsalve Y A. A review of polyvinyl alcohol derivatives: promising materials for pharmaceutical & biomedical applications[J]. 2014, 8(24): 674⁃684. |
25 | Duman O, Uğurlu H, Diker C Ö, et al. Fabrication of highly hydrophobic or superhydrophobic electrospun PVA and agar/PVA membrane materials for efficient and selective oil/water separation[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107405. |
26 | Soliman T S, Zaki M F, Hessien M M, et al. The structure and optical properties of PVA⁃BaTiO3 nanocomposite films[J]. Optical Materials, 2021, 111: 110648. |
27 | Abedi⁃Firoozjah R, Chabook N, Rostami O, et al. PVA/starch films:an updated review of their preparation, characterization, and diverse applications in the food industry[J]. Polymer testing, 2023, 118: 107903. |
28 | Xie J, Yang M, Liang J, et al. Self⁃healing of internal damage in mechanically robust polymers utilizing a reversibly convertible molecular network[J]. Journal of Materials Chemistry A, 2021, 9(29): 15 975⁃15 984. |
29 | Briou B, Améduri B, Boutevin B. Trends in the Diels⁃Alder reaction in polymer chemistry[J]. Chemical Society Reviews, 2021, 50(19): 11 055⁃11 097. |
30 | Nicolaou K C, Snyder S A, Montagnon T, et al. The Diels⁃Alder reaction in total synthesis[J]. Angewandte Chemie International Edition, 2002, 41(10): 1 668⁃1 698. |
31 | Ratwani C R, Kamali A R, Abdelkader A M. Self⁃healing by Diels⁃Alder cycloaddition in advanced functional polymers: A review[J]. Progress in Materials Science, 2023, 131: 101001. |
32 | Xiangjun W, Li X, Lin Q, et al. A thermoreversible crosslinking hot⁃melt adhesive: reversibility and performance[J]. RSC advances, 2021, 11(52): 32 565⁃32 572. |
33 | Guo M, Chen L, Fang T, et al. Synthesis, properties and applications of self‐repairing carbohydrates as smart materials via thermally reversible DA bonds[J]. Polymers for Advanced Technologies, 2021, 32(3): 1 026⁃1 037. |
34 | Ren S, Liang H, Sun P, et al. A tri⁃responsive and fast self⁃healing organogel with stretchability based on multiple dynamic covalent bonds[J]. New Journal of Chemistry, 2020, 44(4): 1 609⁃1 614. |
35 | Zheng W, Xu L, Li Y, et al. Anti⁃freezing, moisturizing, resilient and conductive organohydrogel for sensitive pressure sensors[J]. Journal of Colloid and Interface Science, 2021, 594: 584⁃592. |
36 | Memon H, Liu H, Rashid M A, et al. Vanillin⁃based epoxy vitrimer with high performance and closed⁃loop recyclability[J]. Macromolecules, 2020, 53(2): 621⁃630. |
37 | Cao J, Zhao X, Ye L. A facile strategy to construct biocompatible poly (vinyl alcohol)⁃based self⁃healing hydrogels[J]. Soft Matter, 2022, 18(35): 6 561⁃6 571. |
38 | Baron R I, Culica M E, Biliuta G, et al. Physical hydrogels of oxidized polysaccharides and poly (vinyl alcohol) for wound dressing applications[J]. Materials, 2019, 12(9): 1 569. |
39 | Zhang C, Lu H, Wang X. Transient polymer hydrogels based on dynamic covalent borate ester bonds[J]. Chinese Journal of Chemistry, 2022, 40(23): 2 794⁃2 800. |
40 | Ding Q, Xu X, Yue Y, et al. Nanocellulose⁃mediated electroconductive self⁃healing hydrogels with high strength, plasticity, viscoelasticity, stretchability, and biocompatibility toward multifunctional applications[J]. ACS applied materials & interfaces, 2018, 10(33): 27 987⁃28 002. |
41 | Ji N, Luo J, Zhang W, et al. A novel polyvinyl alcohol‐based hydrogel with ultra‐fast self⁃healing ability and excellent stretchability based on multi dynamic covalent bond cross‐linking[J]. Macromolecular Materials and Engineering, 2023, 308(3): 2200525. |
42 | Yuan T, Cui X, Liu X, et al. Highly tough, stretchable, self⁃healing, and recyclable hydrogels reinforced by in situ⁃formed polyelectrolyte complex nanoparticles[J]. Macromolecules, 2019, 52(8): 3 141⁃3 149. |
43 | Niu W, Zhu Y, Wang R, et al. Remalleable, healable, and highly sustainable supramolecular polymeric materials combining superhigh strength and ultrahigh toughness[J]. ACS applied materials & interfaces, 2020, 12(27): 30 805⁃30 814. |
44 | Fang X, Qing Y, Lou Y, et al. Degradable, recyclable, water⁃resistant, and eco⁃friendly poly (vinyl alcohol)⁃based supramolecular plastics[J]. ACS Materials Letters, 2022, 4(6): 1 132⁃1 138. |
45 | Niu W, Tian Q, Liu Z, et al. Solvent‐free and skin‐like supramolecular ion‐conductive elastomers with versatile processability for multifunctional ionic tattoos and on‐skin bioelectronics[J]. Advanced Materials, 2023: 2304157. |
46 | Chen Y, Dai S, Zhu H, et al. Self⁃healing hydrogel sensors with multiple shape memory properties for human motion monitoring[J]. New Journal of Chemistry, 2021, 45(1): 314⁃320. |
47 | Lu W, Le X, Zhang J, et al. Supramolecular shape memory hydrogels: a new bridge between stimuli⁃responsive polymers and supramolecular chemistry[J]. Chemical Society Reviews, 2017, 46(5): 1 284⁃1 294. |
48 | Li Y, Li S, Sun J. Degradable Poly (vinyl alcohol)‐based supramolecular plastics with high mechanical strength in a watery environment[J]. Advanced Materials, 2021, 33(13): 2007371. |
49 | Lin C, Liu Y, Xie X. GO/PVA nanocomposites with significantly enhanced mechanical properties through metal ion coordination[J]. Chinese Chemical Letters, 2019, 30(5): 1 100⁃1 104. |
50 | Javanbakht S, Darvishi S, Dorchei F, et al. Cyclodextrin host⁃guest recognition in glucose⁃monitoring sensors[J]. ACS omega, 2023, 8(37): 33 202⁃33 228. |
51 | Jia Y G, Jin J, Liu S, et al. Self⁃healing hydrogels of low molecular weight poly (vinyl alcohol) assembled by host⁃guest recognition[J]. Biomacromolecules, 2018, 19(2): 626⁃632. |
52 | Liu F, Liu X, Gu H. Multi‐network poly (β‐cyclodextrin)/PVA/gelatin/carbon nanotubes composite hydrogels constructed by multiple dynamic crosslinking as flexible electronic devices[J]. Macromolecular Materials and Engineering, 2022, 307(3): 2100724. |
[1] | 肖扬, 岳楠, 郭学钟, 陆波, 冯跃战, 黄明, 刘春太. 类玻璃高分子基碳纤维复合材料及其成型方法研究进展[J]. 中国塑料, 2024, 38(10): 103-113. |
[2] | 周向阳, 林艺冰, 徐梓轩, 龚根香, 肖敏, 尹国强. 选择性透过CO2气体PVA/淀粉膜制备及性能研究[J]. 中国塑料, 2023, 37(2): 38-44. |
[3] | 周舒毅, 朱敏, 刘忆颖, 曹舒惠, 蔡启轩, 聂慧, 张玉霞, 周洪福. 高分子止血材料研究进展[J]. 中国塑料, 2022, 36(7): 74-84. |
[4] | 刘伟, 吴显, 陈小澄, 成晓琼, 张纯. 羧基化填料对聚乙烯醇/纳米纤维素水凝胶力学、导电和传感性能的影响[J]. 中国塑料, 2022, 36(6): 16-23. |
[5] | 李福杰, 齐斌, 徐华亭, 王立梅. 交联壳聚糖/聚乙烯醇/蜗牛黏液复合膜的制备及性能研究[J]. 中国塑料, 2022, 36(5): 53-61. |
[6] | 隋振全, 毛金超, 范金石. 壳聚糖/聚乙烯醇液态地膜的制备与应用[J]. 中国塑料, 2022, 36(3): 21-25. |
[7] | 于雯霞, 党春蕾, 何艺琳, 王耀民, 张艳娥, 刘茜, 田华峰. 聚乙烯醇共混薄膜研究进展[J]. 中国塑料, 2022, 36(11): 164-173. |
[8] | 张家乐, 薄采颖, 贝钰, 沙野, 贾普友, 周永红. 生物基vitrimer材料研究进展[J]. 中国塑料, 2022, 36(10): 138-148. |
[9] | 沙金, 陈欣, 陈冬平, 马玉录, 谢林生. 基于EHD的PVA薄膜图案化及其在玻璃表面微结构制造中的应用[J]. 中国塑料, 2021, 35(6): 53-59. |
[10] | 郭金强, 王富玉, 张玉霞. 高阻隔高分子材料研究进展[J]. 中国塑料, 2021, 35(5): 146-155. |
[11] | 马超群, 师文钊, 崔杉杉, 张曼妍, 周红娟. 聚乙烯醇基多孔复合材料研究进展[J]. 中国塑料, 2021, 35(4): 116-123. |
[12] | 吴首昂, 涂征, 刘北军, 龚兴厚. PAAS/PVA/Zn0.2Fe2.8O4磁性复合水凝胶的合成及其性能研究[J]. 中国塑料, 2021, 35(4): 12-17. |
[13] | 银鹏, 马宏鹏, 郭斌, 李盘欣. 聚乳酸纤维/聚乙烯醇纤维协同增强热塑性淀粉复合材料[J]. 中国塑料, 2021, 35(12): 16-20. |
[14] | 宗琳, 陈晨伟, 陈智杰, 谢晶. 淀粉/聚乙烯醇活性包装薄膜及其在食品包装应用中的研究进展[J]. 中国塑料, 2020, 34(8): 101-112. |
[15] | 陈秀玲, 高山俊, 沈春晖, 齐宏生, 刘洒文. 改性魔芋葡甘聚糖纳米晶对聚乙烯醇薄膜性能的影响[J]. 中国塑料, 2020, 34(5): 38-44. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||