
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2025, Vol. 39 ›› Issue (5): 43-49.DOI: 10.19491/j.issn.1001-9278.2025.05.007
收稿日期:
2024-09-04
出版日期:
2025-05-26
发布日期:
2025-05-22
作者简介:
陈梦(1990—),女,高级工程师,从事道路材料研发及性能分析技术研究,2085474268@qq.com
基金资助:
CHEN Meng1(), LI Wenliang1, ZHANG Tao2, ZHANG Wencai3, YANG Xiying3
Received:
2024-09-04
Online:
2025-05-26
Published:
2025-05-22
摘要:
为研究胶粉/苯乙烯⁃丁二烯⁃苯乙烯嵌段共聚(SBS)复合改性沥青的抗老化性能与机理,制备了SBS掺量为沥青质量2 %、胶粉掺量分别为20 %、25 %、30 %、35 %(质量分数,下同)的复合改性沥青,进行短期老化和不同程度压力老化容器(PAV)老化后,对其抗老化性能进行评价。研究结果表明:老化后,复合改性沥青的高温抗车辙性能提升,针入度、延度、弹性恢复性能、疲劳性能和低温抗变形能力等均发生衰减,衰减幅度随胶粉掺量增加而减小。通过红外光谱技术分析了抗老化性能提升的机理,随着胶粉掺量增加,老化沥青羰基指数、亚砜基指数和红外老化指数(I)的变化幅度变小,红外老化指数方程的斜率也从0.010 39下降至0.005 19,胶粉增强了沥青的抗老化性能。建立的红外老化指数预测模型,可综合评价胶粉掺量和老化时间两项因素对I值的影响;关联微观指标I与宏观指标低温蠕变比值(k)建立的k值预测模型准确、有效,可对复合改性沥青的低温抗老化性能进行快速对比分析。
中图分类号:
陈梦, 李文良, 张涛, 张文才, 杨喜英. 胶粉/SBS复合改性沥青抗老化性能与机理研究[J]. 中国塑料, 2025, 39(5): 43-49.
CHEN Meng, LI Wenliang, ZHANG Tao, ZHANG Wencai, YANG Xiying. Anti⁃aging performance and mechanism of asphalts modified with rubber powder/SBS composites[J]. China Plastics, 2025, 39(5): 43-49.
项目 | 软化点/℃ | 针入度(25 ℃)/0.1 mm | 延度(15 ℃)/cm | 135 ℃旋转黏度/Pa·s | 密度/g·cm-3 |
---|---|---|---|---|---|
技术要求 | ≥45 | 80~100 | ≥100 | — | — |
试验结果 | 48.7 | 89.6 | >100 | 0.583 | 1.022 |
项目 | 软化点/℃ | 针入度(25 ℃)/0.1 mm | 延度(15 ℃)/cm | 135 ℃旋转黏度/Pa·s | 密度/g·cm-3 |
---|---|---|---|---|---|
技术要求 | ≥45 | 80~100 | ≥100 | — | — |
试验结果 | 48.7 | 89.6 | >100 | 0.583 | 1.022 |
项目 | 筛余物/% | 相对密度 | 含水率/% | 铁含量/% | 纤维含量/% | 灰分/% | 丙酮抽出物/% | 炭黑含量/% | 橡胶烃含量/% | 溶解度/% |
---|---|---|---|---|---|---|---|---|---|---|
技术要求 | <10 | 1.10~1.30 | <1 | <0.03 | <1 | ≤8 | ≤16 | ≥28 | ≥48 | ≥16 |
试验结果 | 0.6 | 1.18 | 0.45 | 0.01 | 0.09 | 6.89 | 8.27 | 32.68 | 53.04 | 18.5 |
项目 | 筛余物/% | 相对密度 | 含水率/% | 铁含量/% | 纤维含量/% | 灰分/% | 丙酮抽出物/% | 炭黑含量/% | 橡胶烃含量/% | 溶解度/% |
---|---|---|---|---|---|---|---|---|---|---|
技术要求 | <10 | 1.10~1.30 | <1 | <0.03 | <1 | ≤8 | ≤16 | ≥28 | ≥48 | ≥16 |
试验结果 | 0.6 | 1.18 | 0.45 | 0.01 | 0.09 | 6.89 | 8.27 | 32.68 | 53.04 | 18.5 |
样品 | 老化时间 | 羰基指数 | 亚砜基指数 | 红外老化指数 |
---|---|---|---|---|
20 %复合改性沥青 | 未老化 | 0.112 2 | 0.298 1 | 0.410 3 |
短期老化5 h | 0.116 3 | 0.319 2 | 0.435 5 | |
PAV老化10 h | 0.160 0 | 0.349 6 | 0.509 6 | |
PAV老化20 h | 0.229 3 | 0.374 0 | 0.603 3 | |
PAV老化30 h | 0.315 6 | 0.409 6 | 0.725 2 | |
25 %复合改性沥青 | 未老化 | 0.107 1 | 0.283 4 | 0.390 5 |
短期老化5 h | 0.110 3 | 0.299 5 | 0.409 8 | |
PAV老化10 h | 0.132 7 | 0.324 8 | 0.457 5 | |
PAV老化20 h | 0.167 5 | 0.354 9 | 0.522 4 | |
PAV老化30 h | 0.226 0 | 0.383 0 | 0.609 0 | |
30 %复合改性沥青 | 未老化 | 0.076 3 | 0.296 7 | 0.373 0 |
短期老化5 h | 0.078 8 | 0.310 5 | 0.389 3 | |
PAV老化10 h | 0.096 1 | 0.333 4 | 0.429 5 | |
PAV老化20 h | 0.125 1 | 0.364 3 | 0.489 4 | |
PAV老化30 h | 0.160 4 | 0.383 0 | 0.543 4 | |
35 %复合改性沥青 | 未老化 | 0.065 5 | 0.291 0 | 0.356 5 |
短期老化5 h | 0.067 5 | 0.302 9 | 0.370 4 | |
PAV老化10 h | 0.083 2 | 0.320 4 | 0.403 6 | |
PAV老化20 h | 0.105 0 | 0.346 2 | 0.451 2 | |
PAV老化30 h | 0.141 3 | 0.372 3 | 0.513 6 | |
SBS改性沥青 | 未老化 | 0.129 1 | 0.296 7 | 0.425 8 |
短期老化5 h | 0.141 4 | 0.331 3 | 0.472 7 | |
PAV老化10 h | 0.205 9 | 0.425 7 | 0.631 6 | |
PAV老化20 h | 0.279 3 | 0.536 1 | 0.815 4 | |
PAV老化30 h | 0.367 4 | 0.628 8 | 0.996 2 |
样品 | 老化时间 | 羰基指数 | 亚砜基指数 | 红外老化指数 |
---|---|---|---|---|
20 %复合改性沥青 | 未老化 | 0.112 2 | 0.298 1 | 0.410 3 |
短期老化5 h | 0.116 3 | 0.319 2 | 0.435 5 | |
PAV老化10 h | 0.160 0 | 0.349 6 | 0.509 6 | |
PAV老化20 h | 0.229 3 | 0.374 0 | 0.603 3 | |
PAV老化30 h | 0.315 6 | 0.409 6 | 0.725 2 | |
25 %复合改性沥青 | 未老化 | 0.107 1 | 0.283 4 | 0.390 5 |
短期老化5 h | 0.110 3 | 0.299 5 | 0.409 8 | |
PAV老化10 h | 0.132 7 | 0.324 8 | 0.457 5 | |
PAV老化20 h | 0.167 5 | 0.354 9 | 0.522 4 | |
PAV老化30 h | 0.226 0 | 0.383 0 | 0.609 0 | |
30 %复合改性沥青 | 未老化 | 0.076 3 | 0.296 7 | 0.373 0 |
短期老化5 h | 0.078 8 | 0.310 5 | 0.389 3 | |
PAV老化10 h | 0.096 1 | 0.333 4 | 0.429 5 | |
PAV老化20 h | 0.125 1 | 0.364 3 | 0.489 4 | |
PAV老化30 h | 0.160 4 | 0.383 0 | 0.543 4 | |
35 %复合改性沥青 | 未老化 | 0.065 5 | 0.291 0 | 0.356 5 |
短期老化5 h | 0.067 5 | 0.302 9 | 0.370 4 | |
PAV老化10 h | 0.083 2 | 0.320 4 | 0.403 6 | |
PAV老化20 h | 0.105 0 | 0.346 2 | 0.451 2 | |
PAV老化30 h | 0.141 3 | 0.372 3 | 0.513 6 | |
SBS改性沥青 | 未老化 | 0.129 1 | 0.296 7 | 0.425 8 |
短期老化5 h | 0.141 4 | 0.331 3 | 0.472 7 | |
PAV老化10 h | 0.205 9 | 0.425 7 | 0.631 6 | |
PAV老化20 h | 0.279 3 | 0.536 1 | 0.815 4 | |
PAV老化30 h | 0.367 4 | 0.628 8 | 0.996 2 |
样品 | 方程式 | R2 | 公式编号 |
---|---|---|---|
20 %复合改性沥青 | 0.994 9 | (4) | |
25 %复合改性沥青 | 0.992 9 | (5) | |
30 %复合改性沥青 | 0.999 5 | (6) | |
35 %复合改性沥青 | 0.994 9 | (7) | |
SBS改性沥青 | 0.998 6 | (8) |
样品 | 方程式 | R2 | 公式编号 |
---|---|---|---|
20 %复合改性沥青 | 0.994 9 | (4) | |
25 %复合改性沥青 | 0.992 9 | (5) | |
30 %复合改性沥青 | 0.999 5 | (6) | |
35 %复合改性沥青 | 0.994 9 | (7) | |
SBS改性沥青 | 0.998 6 | (8) |
1 | 郭猛,任鑫,焦峪波,等.沥青及沥青混合料老化与抗老化研究综述[J].中国公路学报,2022,35(04):41⁃59. |
GUO M, REN X, JIAO Y B, et al. Review of aging and antiaging of asphalt and asphalt mixtures[J]. China Journal of Highway and Transport, 2022, 35(04): 41⁃59. | |
2 | Ma L, Varveri A, Jing R, et al. Comprehensive review on the transport and reaction of oxygen and moisture towards coupled oxidative ageing and moisture damage of bitumen[J]. Construction and Building Materials, 2021, 283: 122632. |
3 | 胡栋梁,顾兴宇,孙丽君,等.基于量子化学的沥青热老化与紫外老化机理[J].交通运输工程学报,2023,23(02):141⁃152. |
HU D L, GU X Y, SUN L J, et al. Quantum chemistry⁃based thermal and UV aging mechanism of asphalt[J]. Journal of Traffic and Transportation Engineering, 2023, 23(02): 141⁃152. | |
4 | Li D, Leng Z, Wang H, et al. Structural and mechanical evolution of the multiphase asphalt rubber during aging based on micromechanical back⁃calculation and experimental methods[J]. Materials & Design, 2022, 215: 110421. |
5 | Wang H, Liu X, Apostolidis P, et al. Numerical investigation of rubber swelling in bitumen[J]. Construction and Building Materials, 2019, 214: 506⁃515. |
6 | Xu P, Zhu Z, Wang Y, et al. Phase structure characterization and compatibilization mechanism of epoxy asphalt modified by thermoplastic elastomer (SBS)[J]. Construction and Building Materials, 2022, 320: 126262. |
7 | 何亮,马育,凌天清,等.橡胶改性沥青及老化特征微观尺度分析[J].功能材料,2015,46(21):21 093⁃21 098. |
HE L, MA Y, LING T Q, et al. Analysis on crumb rubber modified asphalt and its aging characteristics on microscale[J]. Journal of Functional Materials, 2015, 46(21): 21 093⁃21 098. | |
8 | Ding Y, Xi Y, Li X, et al. Aging simulation of SBS modifier during service life of modified asphalt[J]. Journal of Materials in Civil Engineering, 2022, 34(8): 04022173. |
9 | Geng J, Chen M, Xia C, et al. Quantitative determination for effective rubber content in aged modified asphalt binder[J]. Journal of Cleaner Production, 2022, 331: 1299. |
10 | Wang H, Liu X, Apostolidis P, et al. Effect of laboratory aging on chemistry and rheology of crumb rubber modified bitumen[J]Materials and Structures, 2020, 53: 26. |
11 | 谭忆秋,符永康,纪伦,等.橡胶沥青低温评价指标[J].哈尔滨工业大学学报,2016,48(03):66⁃70. |
TAN Y Q, FU Y K, JI L, et al. Low⁃temperature evaluation index of rubber asphalt[J]. Journal of Harbin Institute of Technology, 2016, 48(03): 66⁃70. | |
12 | 王其敏,吴文华,李恒,等.废胶粉/天然沥青复合改性沥青抗老化性能及其机理研究[J].公路,2022,67(12):322⁃329. |
WANG Q M, WU W H, LI H, et al. Research on anti⁃aging property of compound modified asphalt based on waste rubber powder and natural asphalt[J]. Highway, 2022, 67(12): 322⁃329. | |
13 | 张含宇,徐刚,陈先华,等.不同试验方法的老化沥青疲劳性能研究[J].建筑材料学报,2020,23(01):168⁃175. |
ZHANG H Y, XU G, CHEN X H, et al. Fatigue property of aged asphalt binders using different experimental methods[J]. Journal of Building Materials, 2020, 23(01): 168⁃175. | |
14 | Zhang L, Zhang C, Zhang Z, et al. Characterization, properties and mixing mechanism of rubber asphalt colloid for sustainable infrastructure[J]. Polymers, 2022, 14(20): 4429. |
15 | Wang Q, Li S, Wu X, et al. Weather aging resistance of different rubber modified asphalts[J]. Construction and Building Materials, 2016, 106: 443⁃448. |
16 | Wang S, Huang W, Liu X, et al. Influence of high content crumb rubber and different preparation methods on properties of asphalt under different aging conditions: chemical properties, rheological properties, and fatigue performance[J]. Construction and Building Materials, 2022, 327: 126937. |
17 | Wang H, Apostolidis P, Zhu J, et al. The role of thermodynamics and kinetics in rubber⁃bitumen systems: a theoretical overview[J]. International Journal of Pavement Engineering, 2021, 22(14): 1 785⁃1 800. |
18 | Wang S, Gao Y, Yan K, et al. Effect of long⁃term aging on waste tire rubber and amorphous poly alpha olefin compound modified asphalt binder and its mixtures[J]. Construction and Building Materials, 2021, 272: 121667. |
[1] | 徐强祥, 张国平, 胡一红, 杨法勇, 赵琼阳, 李志刚. 脱硫胶粉/SBS改性沥青性能及机理研究[J]. 中国塑料, 2025, 39(1): 13-18. |
[2] | 徐传浩, 石振武, 池波. BMH型温拌剂对废塑/SBS复合改性沥青疲劳性能的影响[J]. 中国塑料, 2024, 38(8): 94-99. |
[3] | 胡永祥, 谢纪岭, 李伟铭, 张璐, 汤香港, 吕亿同, 申红望, 鞠冠男. 马来酸酐接枝改性GTR对聚乳酸性能的影响[J]. 中国塑料, 2024, 38(7): 20-24. |
[4] | 赵永飞, 张文才, 王科, 郝晓刚, 申峻, 杨喜英, 赵丽荣, 李建红, 赵志新, 乔杰. 废弃聚乙烯改性剂改性沥青研究及其应用技术进展[J]. 中国塑料, 2024, 38(7): 93-99. |
[5] | 陈正聪, 林睿, 何艺, 李松. 石墨烯/SBS复合改性沥青混合料性能研究[J]. 中国塑料, 2024, 38(4): 54-59. |
[6] | 孙吉书, 濮夏天, 杨凯, 靳灿章. 硅烷偶联剂改性蒙脱土/SBS/HVA高黏改性沥青最佳掺量确定及其性能评价[J]. 中国塑料, 2024, 38(3): 18-25. |
[7] | 杨喜英, 张文才, 曲立杰, 史文秀. 硅⁃铝包覆TiO2功能化SBS改性沥青抗老化机理及性能研究[J]. 中国塑料, 2024, 38(10): 29-35. |
[8] | 丁天雨, 杨洋, 晏永, 张世博, 赵艳芳. 活化胶粉/纳米碳酸钙复合改性沥青性能影响及机理研究[J]. 中国塑料, 2024, 38(10): 48-54. |
[9] | 张宏宇. 废胶粉/再生聚乙烯/再生聚丙烯功能化复合改性沥青及其混合料性能研究[J]. 中国塑料, 2024, 38(10): 91-96. |
[10] | 杨喜英, 陈梦, 张文才, 裴强. SBS/纳米碳酸钙复合改性沥青热稳定性研究[J]. 中国塑料, 2023, 37(8): 45-54. |
[11] | 万翼, 李莉, 菊春燕, 郝雪纯, 李润. 乌鲁木齐市塑料垃圾年产量预测及影响因素分析[J]. 中国塑料, 2022, 36(4): 121-127. |
[12] | 张庭, 金清平, 宋仕娥, 曹南南, 邓思远. 不同腐蚀环境下FRP筋耐久性与寿命预测研究进展[J]. 中国塑料, 2022, 36(3): 75-81. |
[13] | 李宁利, 王猛, 王瑞, 朱壮壮. 橡塑合金改性沥青制备工艺关键参数研究[J]. 中国塑料, 2022, 36(12): 78-85. |
[14] | 王杨慧, 马玉录, 谢林生, 宋果, 朱惠豪. 高填充改性复合材料导热预测模型的建立及应用[J]. 中国塑料, 2020, 34(7): 49-55. |
[15] | 方胜杰, 毕超. 基于BP神经网络的挤出型材线径预测模型的开发及应用[J]. 中国塑料, 2019, 33(10): 54-58. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||