中国塑料 ›› 2016, Vol. 30 ›› Issue (11): 76-83 .DOI: 10.19491/j.issn.1001-9278.2016.11.014

• 加工与应用 • 上一篇    下一篇

3D打印成型工艺及其应用研究

邱海飞   

  1. 西京学院
  • 收稿日期:2016-06-06 修回日期:2016-07-26 出版日期:2016-11-26 发布日期:2016-11-26

Study of Molding Process and Application of 3D Printing Technology

  • Received:2016-06-06 Revised:2016-07-26 Online:2016-11-26 Published:2016-11-26

摘要: 从增材制造的实现原理出发,分析了当前几种主流三维(3D)成型工艺的技术特点、设备原理及实现流程。以工业级3D打印机为研究平台,将熔融沉积成型(FDM)工艺应用于复杂型腔结构和传动组件结构的快速成型,通过3D建模、数据转化、切片处理、工艺参数选择、模型包计算及工艺后处理等一系列环节的实践探索,明确了FDM成型工艺的技术原理与应用流程,并成功制作了丙烯腈丁二烯苯乙烯共聚物(ABS)材质的3D打印模型。结果表明,复杂型腔零件切片厚度为0.254 mm、传动组件切片厚度为0.178 mm时,3D成型件具有理想的工艺精度和打印效率。

关键词: 三维打印, 熔融沉积, 成型工艺, 原理, 切片处理, 应用

Abstract: This article analyzed the current technical feature, equipment principle and implementation process of several mainstream 3D-printing technologies, which was started from the principle of additive manufacturing(AM). Based on the industrial-scale 3D printer (Dimension Elite) as a research platform, a deposition modeling (FDM) process was adopted for the rapid prototyping of parts with complicated cavity and transmission-component structures. Through a series of practical exploration for 3D modeling, data conversion, slicing process, process parameter selection, model package calculation and postprocessing etc., the technical principle and application procedure of FDM molding process were confirmed. The 3D-printed models were fabricated successfully by using ABS resin. The results indicated that the 3D-molded parts achieved optimum precision and printing efficiency when the slice thickness of complicated cavity parts and transmission components were set to 0.254 and 0.178 mm, respectively.

Key words: 3D printing, fused deposition modeling, molding process, principle, slice process, application