
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2020, Vol. 34 ›› Issue (6): 110-117.DOI: 10.19491/j.issn.1001-9278.2020.06.017
曹齐茗1,2, 孟鑫1,2(), 公维光1,2, 李晨洋1,2, 姚中阳1,2
收稿日期:
2019-12-02
出版日期:
2020-06-26
发布日期:
2020-06-26
Qiming CAO1,2, Xin MENG1,2(), Weiguang GONG1,2, Chenyang LI1,2, Zhongyang YAO1,2
Received:
2019-12-02
Online:
2020-06-26
Published:
2020-06-26
Contact:
Xin MENG
E-mail:mengxin@ecust.edu.cn
摘要:
成核剂在改善聚乳酸(PLA)结晶性能中具有重要作用,本文介绍了PLA的结晶行为,综述了PLA用生物质成核剂的国内外研究进展,包括多糖类成核剂淀粉、纤维素、甲壳素、壳聚糖和环糊精,酚类成核剂木质素,醇类成核剂肌醇,蛋白质类成核剂氨基酸以及羧酸类成核剂乳清酸;其次,提出了目前生物质成核剂应用中存在的问题与改性方法;最后,展望了PLA生物质成核剂未来发展前景。
中图分类号:
曹齐茗, 孟鑫, 公维光, 李晨洋, 姚中阳. 聚乳酸生物质成核剂研究进展[J]. 中国塑料, 2020, 34(6): 110-117.
Qiming CAO, Xin MENG, Weiguang GONG, Chenyang LI, Zhongyang YAO. Research of Biomass Nucleating Agents for Polylactic Acid[J]. China Plastics, 2020, 34(6): 110-117.
1 | JIN F L, HU R R, PARK S J. Improvement of Thermal Behaviors of Biodegradable Poly (lactic acid) Polymer: A Review[J]. Composites Part B: Engineering, 2018, 164: 287‑296. |
2 | VASILE C, PAMFIL D, RÂPĂ M, et al. Study of the Soil Burial Degradation of Some PLA/CS Biocomposites[J]. Composites Part B: Engineering, 2018, 142: 251‑262. |
3 | ZARE Y, RHEE K Y. Modeling of Viscosity and Complex Modulus for Poly (lactic acid)/Poly (ethylene oxide)/Carbon Nanotubes Nanocomposites Assuming Yield Stress and Network Breaking Time[J]. Composites Part B: Engineering, 2019, 156: 100‑107. |
4 | AGHJEH M R, KAZEROUNI Y, OTADI M, et al. A Combined Experimental and Theoretical Approach to Quantitative Assessment of Microstructure in PLA/PP/Organo‑clay Nanocomposites; Wide‑angle X‑ray Scattering and Rheological Analysis[J]. Composites Part B: Engineering, 2018, 137: 235‑246. |
5 | LI M, HU D, WANG Y, et al. Nonisothermal Crystallization Kinetics of Poly(lactic acid) Formulations Comprising Talc with Poly(Ethylene glycol)[J]. Polymer Engineering Science, 2010, 50(12): 2 298‑2 305. |
6 | PAN P, LIANG Z, CAO A, et al. Layered Metal Phosphonate Reinforced Poly(L‑lactide) Composites with Ahighly Enhanced Crystallization Rate[J].ACS Applied Materials Interfaces, 2009, 1(2): 402‑41l. |
7 | HARRIS A M, LEE E C. Improving Mechanical Performance of Injection Molded PLA by Controlling Crystallinity[J]. Journal of Applied Polymer Science, 2008, 107(4): 2 246‑2 255. |
8 | 随美丽.氨基酸锌调控聚乳酸结晶性能的研究[D].大连:大连理工大学,2017. |
9 | PUIGGALI J, IKADA Y, TSUJI H, et al. The Frustrated Structure of Poly(L‑lactide)[J]. Polymer, 2000, 41(25):8 921‑8 930. |
10 | KAI W H, PAN P J, ZHU B, et al. Polymorphous Crystallization and Multiple Melting Behavior of Poly(L‑lactide): Molecular Weight Dependence[J]. Macromolecules, 2007, 40:6 898‑6 905. |
11 | IKADA Y, JAMSHIDI K, TSUJI H. Stereocomplex Formation between Enantiomeric Poly(lactide)s[J]. Mecromolecules, 1987, 20(4):904‑906. |
12 | TSUJI H, WADA T, SAKAMOTO Y, et al. Stereocomplex Crystallization and Spherulite Growth Behavior of Poly(L‑lactide)‑B‑Poly(D‑lactide) Stereodiblock Copolymers[J]. Polymer, 2010, 51(21):4 937‑4 947. |
13 | NARITA J, KATAGIRI M, TSUJI H. Highly Enhanced Nucleating Effect of Melt‑Recrystallized Stereocomplex Crystallites on Poly(L‑lactic acid) Crystallization[J]. Macromolecular Materials & Engineering, 2011, 296(10):887‑893. |
14 | WEI X F, BAO R Y, CAO Z Q, et al. Stereocomplex Crystallite Network in Asymmetric PLLA/PDLA Blends: Formation, Structure, and Confining Effect on the Crystallization Rate of Homocrystallites[J]. Macromolecules, 2014, 47(4):1 439‑1 448. |
15 | YIN H Y, WEI X F, BAO R Y, et al. Enhancing Thermomechanical Properties and Heat Distortion Resistance of Poly(L‑lactide) with High Crystallinity under High Cooling Rate[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(4):654‑661. |
16 | 郝妮媛. 基于α和β成核剂诱导聚乳酸结晶过程的研究[D]. 镇江:江苏科技大学, 2015. |
17 | BINSBERGEN F L, LANGE B G M D. Heterogeneous Nucleation in the Crystallization of Polyolefins: Part 2. Kinetics of Crystallization of Nucleated Polypropylene[J]. Polymer, 1970, 11(6):309‑332. |
18 | WITTMANN J C, LOTZ B. Epitaxial Crystallization of Polyethylene on Organic Substrates: a Reappraisal of the Mode of Action of Selected Nucleating Agents[J]. Journal of Polymer Science, Polymer Physics Edition, 1981, 19(12):1 837‑1 851. |
19 | KANG K S, LEE S I, LEE T J, et al. Effect of Biobased and Biodegradable Nucleating Agent on the Isothermal Crystallization of Poly(lactic acid)[J]. Korean Journal of Chemical Engineering, 2008, 25(3): 599‑608. |
20 | LI S, XIONG Z Y, FEI P, et al. Parameters Characterizing the Kinetics of the Nonisothermal Crystallization of Thermoplastic Starch/Poly(lactic acid) Composites as Determined by Differential Scanning Calorimetry [J]. Journal of Applied Polymer Science, 2013, 129:3 566‑3 573. |
21 | JARIYASAKOOLROJ P, CHIRACHANCHAI S. Silane Modified Starch for Compatible Reactive Blend with Poly(lactic acid)[J]. Carbohydrate Polymers, 2014, 106(1):255‑263. |
22 | 林凤采, 卢麒麟, 卢贝丽, 等.纳米纤维素及其聚合物纳米复合材料的研究进展[J].化工进展, 2018, 37(9):3 454‑3 470. |
LIN F C, LU Q L, LU B L, et al. Research Progress of Nanocellulose and Its Polymer Nanocomposites[J]. Chemical Industry and Engineering Progress, 2018, 37(9):3 454‑3 470. | |
23 | 韩 青, 杨革生, 于敏敏, 等. 玉米秸秆纤维素增强聚乳酸复合材料的制备及其界面改性[J]. 纤维素科学与技术, 2019, 27(1):17‑22, 30. |
HAN Q, YANG G S, YU M M. Preparation and Interface Modification of PLA Composite Reinforced by Corn Straw Cellulose [J]. Journal of Cellulose Science and Technology, 2019, 27(1):17‑22, 30. | |
24 | DING W D, CHU R K M, MARK L H, et al. Non‑isothermal Crystallization Behaviors of Poly(lactic acid)/Cellulose Nanofiber Composites in the Presence of CO2[J]. European Polymer Journal, 2015, 71:231‑247. |
25 | HUAN S, LIU G, HAN G, et al. Electrospun Poly(lactic acid)‑based Fibrous Nanocomposite Reinforced by Cellulose Nanocrystals: Impact of Fiber Uniaxial Alignment on Microstructure and Mechanical Properties[J]. Biomacromolecules, 2018,19(3):1 037‑1 046. |
26 | 张欢欢.聚乳酸/纤维素纳米晶复合材料中立构复合晶体的高压形态调控[D].四川:西南交通大学,2018. |
27 | 张 静, 丁长坤, 段镜月, 等.聚乳酸/纤维素纳米晶复合材料的制备与性能研究[J].中国塑料, 2018, 32(3):22‑26. |
ZHANG J, DING C K, DUAN J Y, et al. Preparation and Properties of Polylactic Acid/Cellulose Nanocrystal Composites[J]. China Plastics, 2018, 32(3):22‑26. | |
28 | 张春梅,游曼,翟天亮.接枝改性纤维素纳米晶对聚乳酸结晶性能的影响[J].塑料工业, 2018, 46(10):95‑98. |
ZHANG C M, YOU M, ZHAI T L. Influence of Graft Cellulose Nanocrystals on the Crystallization Properties of Polylactide[J]. China Plastics Industry, 2018, 46(10):95‑98. | |
29 | YEUL V S, RAYALU S S. Unprecedented Chitin and Chitosan: A Chemical Overview[J]. Journal of Polymers and the Environment, 2013, 21(2):606‑614. |
30 | 杨 洋. 生物质/金属、半导体复合材料的制备及其在柔性电子中的应用研究[D].广州:华南理工大学, 2018. |
31 | 李彩荣. 改性甲壳素晶须/聚乳酸纳米复合材料的制备及其性能研究[D].广州:暨南大学,2015. |
32 | LI C, LIU H, LUO B, et al. Nanocomposites of Poly(L‑lactide) and Surface‑modified Chitin Whiskers with Improved Mechanical Properties and Cytocompatibility[J]. European Polymer Journal, 2016, 81:266‑283. |
33 | ELSAWY M A, SAAD G R, SAYED A M. Mechanical, Thermal, and Dielectric Properties of Poly(lactic acid)/Chitosan Nanocomposites[J]. Polymer Engineering & Science, 2016,56(9): 987‑994. |
34 | HIJAZI N, LE MOIGNE N, RODIER E, et al. Biocomposite Films Based on Poly(lactic acid) and Chitosan Nanoparticles: Elaboration, Microstructural and Thermal Characterization[J]. Polymer Engineering and Science, 2018, 59(1): 350‑360. |
35 | ZHANG R, WANG Y M, WANG K J, et al. Crystallization of Poly(lactic acid) Accelerated by Cyclodextrin Complex as Nucleating Agent[J]. Polymer Bulletin, 2013, 70:195‑206. |
36 | LIZUNDIA E, GÓMEZ‑GALVÁN F, PÉREZ‑ÁLVAREZ L, et al. Poly (L‑lactide)/Branched β‑cyclodextrin Blends: Thermal, Morphological and Mechanical Properties[J]. Carbohydrate Polymers, 2016, 144: 25‑32. |
37 | NAN S Y, FANG Z Y, JUN Z W. Preparation and Characterization of Inclusion Complex between β‑cyclodextrin and Polylactic Acid[J]. Polymer (Korea), 2015, 39: 261‑267. |
38 | BYUN Y, RODRIGUEZ K, et al.Improved Thermal Stability of Polylactic Acid (PLA) Composite Film via PLA‑β‑cyclodextrin‑inclusion Complex Systems[J]. International Journal of Biological Macromolecules, 2015, 81: 591‑598. |
39 | JOO M J, AURAS R, ALMENAR E. Preparation and Characterization of Blends Made of Poly(L‑lactic acid) and β‑cyclodextrin: Improvement of the Blend Properties by Using a Masterbatch[J]. Carbohydrate Polymers, 2011, 86(2):1 022‑1 030. |
40 | 周志鹏, 张可望, 李巧, 等.木质素/聚乳酸复合材料的结构与性能[J].高分子材料科学与工程, 2017, 33(12):31‑35. |
ZHOU Z P, ZHANG K W, LI Q, et al. Structure and Properties of Lignin/Poly(L‑lactic acid) Composites[J]. Polymer Materials Science and Engineering, 2017, 33(12):31‑35. | |
41 | HENDRIK S, CLAUDIA P, OLIVER B. Reduction of Cycle Times in Injection Molding of PLA through Bio‑based Nucleating Agents[R]. European Polymer Journal,2019, 115:6‑11. |
42 | KIM Y, SUHR J, SEO H W, et al. All Biomass and UV Protective Composite Composed of Compatibilized Lignin and Poly (Lactic‑acid)[J]. Scientific Reports, 2017, 7:43 596. |
43 | 彭显达.改性木质素和退火对聚乳酸结晶速率及耐热性能的影响[D]. 湘潭:湘潭大学, 2018. |
44 | 黄贞杰, 陈 由. 微生物法生产肌醇研究进展[J].食品工业科技, 2015, 36(16):384‑389, 400. |
HUANG Z J, CHEN Y. Advances in Microbial Production of Inositol[J]. Science and Technology of Food Industry, 2015, 36(16):384‑389, 400. | |
45 | SHI H, CHEN X, CHEN W, et al. Crystallization Behavior, Heat Resistance, and Mechanical Performances of PLLA/Myo‑inositol Blends: ARTICLE[J]. Journal of Applied Polymer Science, 2017, 134(16). |
46 | TACHIBANA Y, MAEDA T, ITO O, et al. Biobased Myo‑inositol as Nucleator and Stabilizer for Poly(lactic acid)[J]. Polymer Degradation and Stability, 2010, 95(8):1 321‑1 329. |
47 | CARBONE M J, VANHALLE M, GODERIS B, et al. Amino Acids and Poly(amino acids) as Nucleating Agents for Poly(lactic acid)[J]. Amino Acids and Poly(Amino Acids) as Nucleating Agents for Poly(lactic acid) [J]. Journal of Polymer Engineering, 2015, 35(2): 169‑180. |
48 | 代 立. 乳清酸无溴合成工艺研究[D].上海师范大学, 2013. |
49 | SALAČ J, ŠERÁ J, JURČA M, et al. Photodegradation and Biodegradation of Poly(lactic acid) Containing Orotic Acid as a Nucleation Agent[J]. Materials, 2019, 12(3):481. |
50 | QIU Z, LI Z. Effect of Orotic Acid on the Crystallization Kinetics and Morphology of Biodegradable Poly(L‑lactide) as an Efficient Nucleating Agent[J]. Industrial and Enginee⁃ring Chemistry Research, 2011, 50(21):12 299‑122 303. |
[1] | 于昌永, 辛忠. 基于六氢邻苯二甲酸盐的α/β复合成核剂对聚丙烯性能的影响[J]. 中国塑料, 2022, 36(7): 121-128. |
[2] | 沈雪梅, 朱小龙, 胡燕超, 宋任远, 张现峰, 李席. 静电喷雾法制备聚乳酸/布洛芬微球及其性能研究[J]. 中国塑料, 2022, 36(7): 61-67. |
[3] | 周舒毅, 朱敏, 刘忆颖, 曹舒惠, 蔡启轩, 聂慧, 张玉霞, 周洪福. 高分子止血材料研究进展[J]. 中国塑料, 2022, 36(7): 74-84. |
[4] | 邵琳颖, 郗悦玮, 翁云宣. 可降解聚乳酸复合材料研究进展[J]. 中国塑料, 2022, 36(6): 155-164. |
[5] | 王镕琛, 张恒, 孙焕惟, 段书霞, 秦子轩, 李晗, 朱斐超, 张一风. 医疗卫生用聚乳酸非织造材料的制备及其亲水改性研究进展[J]. 中国塑料, 2022, 36(5): 158-166. |
[6] | 李梦琪, 陈雅君. 纳米材料阻燃聚乳酸的研究进展[J]. 中国塑料, 2022, 36(4): 102-114. |
[7] | 张祥凯, 王智敏, 谢建强. 生物质环氧树脂固化剂的研究进展[J]. 中国塑料, 2022, 36(2): 111-124. |
[8] | 孙滔, 杨青, 胡健, 王洋样, 刘博, 云雪艳, 董同力嘎. 聚(乳酸⁃乙醇酸)薄膜制备及其性能研究[J]. 中国塑料, 2022, 36(2): 33-40. |
[9] | 毛晨, 刘番, 鄂毅, 邹姝燕, 龚兴厚. 纳米CoFe2O4的制备及其对PLA结晶性能的影响[J]. 中国塑料, 2022, 36(1): 9-14. |
[10] | 韦宗辰, 郗悦玮, 翁云宣. 聚乳酸基复合骨组织修复材料的研究现状及进展[J]. 中国塑料, 2021, 35(9): 136-146. |
[11] | 唐于婧, 王亚桥, 倪敬越, 王从龙, 王向东. 立构复合晶对聚乳酸发泡行为的影响[J]. 中国塑料, 2021, 35(8): 117-124. |
[12] | 李向阳, 杨林柱, 翟国强, 高婉琴, 王克智, 李训刚. 成核剂对聚丁二酸丁二醇酯结晶与性能的影响[J]. 中国塑料, 2021, 35(8): 146-151. |
[13] | 李玉竹, 姚利辉, 叶世强, 吕国永, 刘盼盼, 徐龙飞, 仇丹. 生物降解材料在水环境中降解性能的研究进展[J]. 中国塑料, 2021, 35(7): 103-114. |
[14] | 段续远, 郑红娟. 改性聚乳酸发泡技术研究进展[J]. 中国塑料, 2021, 35(7): 134-139. |
[15] | 蔡小芳, 袁航, 刁晓倩, 李字义, 封棣. 食品接触聚乳酸杯盖中的滑石粉迁移分析[J]. 中国塑料, 2021, 35(7): 91-96. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||