京公网安备11010802034965号
京ICP备13020181号-2
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2021, Vol. 35 ›› Issue (9): 156-165.DOI: 10.19491/j.issn.1001-9278.2021.09.023
• 综述 • 上一篇
张周雅1, 白世建1, 张玉霞1,2(
), 周洪福1,2, 宫芳芳1, 唐雪古丽1, 王斌1
收稿日期:2021-07-12
出版日期:2021-09-26
发布日期:2021-09-23
基金资助:
ZHANG Zhouya1, BAI Shijian1, ZHANG Yuxia1,2(
), ZHOU Hongfu1,2, GONG Fangfang1, TANG Xueguli1, WANG Bin1
Received:2021-07-12
Online:2021-09-26
Published:2021-09-23
Contact:
ZHANG Yuxia
E-mail:zhangyux@th.tbu.edu.cn
摘要:
介绍了高分子材料导热性能影响因素研究进展,重点阐释了聚合物基体的结构特性(链结构、分子间相互作用、取向、结晶度等)、导热填料(种类、含量、形态、尺寸等)以及制备方法等对高分子材料导热性能的影响。
中图分类号:
张周雅, 白世建, 张玉霞, 周洪福, 宫芳芳, 唐雪古丽, 王斌. 高分子材料导热性能影响因素研究进展[J]. 中国塑料, 2021, 35(9): 156-165.
ZHANG Zhouya, BAI Shijian, ZHANG Yuxia, ZHOU Hongfu, GONG Fangfang, TANG Xueguli, WANG Bin. Research Progress in Factors Affecting Thermal Conductivity of Polymeric Materials[J]. China Plastics, 2021, 35(9): 156-165.
| 1 | CHOY C L, WONG Y W, YANG G W, et al. Elastic Modulus and Thermal Conductivity of Ultradrawn Polyethylene[J]. Polymer Physics, 1999, 37(23): 3 359⁃3 367. |
| 2 | SONG J N, WU L, ZHANG Y. Thermal Conductivity Enhancement of Alumina/Silicone Rubber Composites Through Constructing a Thermally Conductive 3D Framework[J]. Polymer Bulletin, 2019, 77(4): 2 139⁃2 153. |
| 3 | BURGER N, LAACHACHI A, FERRIOL M, et al. Review of Thermal Conductivity in Composites: Mechanisms, Parameters and Theory[J]. Progress in Polymer Science, 2016, 61: 1⁃28. |
| 4 | LEE W S, HAN I Y, YU J, et al. Thermal Characterization of Thermally Conductive Underfill for a Flip⁃Chip Package Using Novel Temperature Sensing Technique[J]. Thermochimica Acta, 2007, 455(1/2): 148⁃155. |
| 5 | BISWAS S, KIM D K, NAM I W, et al. Highly Conductive and Thermally Stable Nanoparticle⁃conjugated Polymer Compounds Through Environmentally Friendly in Situ Synthesis[J]. Progress in Organic Coatings, 2020, 142: 105606. |
| 6 | 王家俊. 聚酰亚胺/氮化铝复合材料的制备与性能研究[D]. 杭州:浙江大学, 2001. |
| 7 | 吕鸣赫. 晶格振动量子化与声子概念[J]. 科技经济市场, 2007(12): 149⁃150,153. |
| LV M H. Concept of Lattice Vibration Quantization and Phonon[J]. Keji Jingji Shichang, 2007, (12): 149⁃150,153. | |
| 8 | 谢 婵, 彭富忠. 导热高分子材料的研究与应用分析[J]. 低碳世界, 2019, 9(12): 268⁃269. |
| XIE C, PENG F Z. Analysis of Research and Application of Thermally Conductive Polymeric Materials[J]. Low Carbon World, 2019, 9(12): 268⁃269. | |
| 9 | 周文英, 张亚婷. 本征型导热高分子材料[J]. 合成树脂及塑料, 2010, 27(2): 69⁃73,84. |
| ZHOU W Y, ZHANG Y T. Progress in Intrinsic Thermal Conductivity Polymers[J]. China Synthetic Resin and Plastics, 2010, 27(2): 69⁃73,84. | |
| 10 | 张进军. 高聚物材料的自组装和相分离[M]. 北京:原子能出版社,2005:1⁃600. |
| 11 | MA H, TIAN Z. Effects of Polymer Chain Confinement on Thermal Conductivity of Ultrathin Amorphous Polystyrene Films[J]. Applied Physics Letters, 2015, 107(7): 073111. |
| 12 | TANAKA T, KOZAKO M, OKAMOTO K. Toward High Thermal Conductivity Nano Micro Epoxy Composites with Sufficient Endurance Voltage[J]. Journal of International Council on Electrical Engineering, 2012, 2(1): 90⁃98. |
| 13 | 肖善熊, 张 艺, 孙世彧, 等. 导热高分子复合材料的研究进展[J]. 广东化工, 2010, 37(2): 5⁃8,15. |
| XIAO S X, ZHANG Y, SUN S Y, et al. Progress in Thermal Conductive Polymer Composites[J]. Guangdong Chemical Industry, 2010, 37(2): 5⁃8,15. | |
| 14 | LIU B C, LI Y B, FEI T, et al. Highly Thermally Conductive Polystyrene/Polypropylene/Boron Nitride Composites with 3D Segregated Filler Networks Prepared by Solution⁃Mixing and Hot⁃Pressing Method[J]. Chemical Engineering Journal, 2019, 358. DOI: https://doi.org/10.1016/j.cej.2019.123829. |
| 15 | 刘 汉, 吴宏武. 填充型导热高分子复合材料研究进展[J]. 塑料工业, 2011, 39(4): 10⁃13. |
| LIU H, WU H W. Research Progress of Thermal Conductive Polymer Composites with Fillers[J]. China Plastics Industry, 2011, 39(4):10⁃13. | |
| 16 | 石路晶, 贾长明. 导热高分子材料在电子封装领域应用研究[J]. 包装工程,2014, 35(17): 127⁃130,134. |
| SHI L J, JIA C M. Research Advances in Application of Thermally Conductive Polymer Material in Electronic Packaging[J]. Packaging Engineering, 2014, 35(17): 127,130,134. | |
| 17 | LIU J, YANG R G. Tuning the thermal conductivity of polymers with mechanical strains[J]. Physical Review, 2010, 81(17): 174122. |
| 18 | ZHANG T, WU X, LUO T, et al. Polymer Nanofibers with Outstanding Thermal Conductivity and Thermal Stability: Fundamental Linkage between Molecular Characteristics and Macroscopic Thermal Properties[J]. The Journal of Physical Chemistry C, 2014, 188(36): 21 148⁃21 159. |
| 19 | LUO T F, ESFARJANI K, SHIOMI J, et al. Molecular Dynamics Simulation of Thermal Energy Transport in Polydimethylsiloxane[J]. Journal of Applied Physics, 2011,109(7):892⁃897. |
| 20 | 周文英, 王 蕴, 曹国政, 等. 本征导热高分子复合材料研究进展[J]. 复合材料学报,2021,38(7):2 038⁃2 055. |
| ZHOU W Y, WANG Y, CAO G Z, et al. Progress in the intrinsic thermally conductive polymer composites[J]. Acta Materiae Compositae Sinica, 2021, 38(7):2 038⁃2 055. | |
| 21 | KIM G H, LEE D, SHANKER A, et al. High Thermal Conductivity in Amorphous Polymer Blends by Engineered Interchain Interactions[J]. Nature Materials, 2015, 14(3): 295⁃300. |
| 22 | ZHANG L, RUESCH M, ZHANG X, et al. Tuning Thermal Conductivity of Crystalline Polymer Nanofibers by Interchain Hydrogen Bonding[J]. RSC Advances, 2015, 107(5): 87 981⁃87 986. |
| 23 | CHEN H Y, GINZBURG V V, YANG J, et al. Thermal Conductivity of Polymer⁃Based Composites: Fundamentals and Applications[J]. Progress in Polymer Science, 2016, 59: 41⁃85. |
| 24 | CHOY C L, KWOK K W, LEUNG W P, et al. Thermal Conductivity of Poly (Ether Ether Ketone) and Its Short⁃Fiber Composites[J]. Journal of Polymer Science Part B Polymer Physics, 1994, 32(8): 1 389⁃1 397. |
| 25 | ANDERSON D R. Thermal Conductivity of Polymers[J]. Chemical Reviews, 1966, 66(6): 677⁃690. |
| 26 | HANSEN D, BERNIER G A. Thermal Conductivity of Polyethylene: The Effects of Crystal Size, Density and Orientation on the Thermal Conductivity[J]. Polymer Engineering and Science, 1972, 12(3): 204⁃208. |
| 27 | 李 丽, 王成国, 李同生, 等. 聚碳酸酯及聚碳酸酯合金导热绝缘高分子材料的研究[J]. 材料热处理学报, 2007, 28(4) :51⁃54. |
| LI L, WANG C G, LI T S, et al. Study on Polycarbonate and Polycarbonate Alloy Thermal Insulating Polymer Materials [J]. Transactions of Materials and Heat Treatment, 2007, 28(4): 51⁃54. | |
| 28 | 丁 鹏, 李 军, 张 锦, 等. Al2O3粒径与形貌对尼龙复合材料导热性能影响研究[J]. 功能材料, 2015, 46(11): 11 065⁃11 068. |
| LI P, LI J, ZHANG J, et al. Influence of Particle Size and Morphology of Al2O3 on Thermal Conductive Property of Nylon Composites[J]. Journal of Functional Materials, 2015, 46(11): 11 065⁃11 068. | |
| 29 | 李侃社, 王 琪. 导热高分子材料研究进展[J]. 功能材料, 2002, 33(2): 136⁃144. |
| LI K S, WANG Q. Advances in Thermal Conductive Polymeric Materials[J]. Journal of Functional Materials, 2002, 33(2): 136⁃144. | |
| 30 | LANGER L, BILLAUDB D, ISSI JP. Thermal Conductivity of Stretched and Annealed Poly (P⁃Phenylene Sulfide) Films[J]. Solid State Communications, 2003, 126: 353⁃357. |
| 31 | 蔡忠龙, 黄元华, 杨光武. 超拉伸聚乙烯的弹性模量和导热性能[J]. 高分子学报, 1997, 3:321⁃342. |
| CAI Z L, HUANG Y H, YANG G W. Elastic Modulus and Thermal Conductivity of Ultra Oriented Polyethylene[J]. Acta Polymercia Sinica, 1997, 3: 321⁃342. | |
| 32 | 杨 悦. 填充型聚合物基导热符合材料的e_DPD模拟研究[D]. 安徽: 安徽大学, 2017. |
| 33 | GAXIOLA L D, KEITH J M, NA M, et al. Predicting the Thermal Conductivity of Multiple Carbon Fillers in Polypropylene⁃Based Resins[J]. Journal of Composite Materials, 2011, 45(12): 1 271⁃1 284. |
| 34 | KUME S, YAMADA I, WATARI K. High⁃Thermal⁃Conductivity AlN Filler for Polymer/Ceramics Composites[J]. Journal of the American Ceramic Society, 2009, 92(1): 153⁃156. |
| 35 | HARADA M, HAMAURA N, OCHI M, et al. Thermal Conductivity of Liquid Crystalline Epoxy/BN Filler Composites Having Ordered Network Structure[J]. Composites Part B Engineering, 2013, 55: 306⁃313. |
| 36 | YU A P, RAMESH P, SUN X, et al. Enhanced Thermal Conductivity in a Hybrid Graphite Nanoplatelet–Carbon Nanotube Filler for Epoxy Composites[J]. Advanced Materials, 2008, 20(24): 4 740⁃4 744. |
| 37 | 高智芳. 纳米填料和高导热高分子复合材料的制备及其性能研究[D]. 天津:天津大学, 2012. |
| 38 | 孙善卫, 方 超. 高导热聚酰亚胺薄膜的制备及性能表征[J]. 安徽化工, 2021, 47(2): 64⁃69. |
| SUN S W, FANG C. Preparation and Performance Characterization of High Thermal Conductivity Polyimide Film[J]. Anhui Chemical Industry, 2021, 47(2): 64⁃69. | |
| 39 | 丁金波, 王振华, 张立群. 纳米氧化铝/天然橡胶复合材料的性能研究[J]. 橡胶工业, 2012, 59(6): 333⁃334. |
| DING J B, WANG Z H, ZHANG L Q. Properties of Nano⁃alumina/NR Composites[J]. China Rubber Industry, 2012, 59(6): 333⁃334. | |
| 40 | 吴 建, 郑炜琼, 周正发, 等. PP⁃g⁃MAH增容PP/BN/ Al2O3导热绝缘复合材料[J]. 塑料工业,2020, 48(4): 132⁃133. |
| WU J, ZHENG W Q, ZHOU Z F, et al. PP⁃g⁃MAH Compatibilizing PP/BN/Al2O3 Thermal Insulation Composite[J]. China Plastics Industry, 2020, 48(4): 132⁃133. | |
| 41 | 张小璇. 导热硅橡胶的制备与性能研究[D]. 济南:山东大学, 2020. |
| 42 | WANG J J, YI X S. Effects of Interfacial Thermal Barrier Resistance and Particle Shape and Size on The Thermal Conductivity of AlN/PI Composites[J]. Composites Science and Technology, 2004, 64(10/11): 1 623⁃1 628. |
| 43 | FU Y X, HE Z X, MO D C, et al. Thermal Conductivity Enhancement with Different Fillers for Epoxy Resin Adhesives[J]. Applied Thermal Engineering, 2014, 66(s1⁃2): 493⁃498. |
| 44 | 郝鲁阳, 温变英, 张宜鹏. 填料形状对聚酰胺6基复合材料导热性能的影响[J]. 中国塑料, 2017, 31(11): 35⁃40. |
| HAO L Y, WEN B Y, ZHANG Y P. Effect of Filler Shape on Thermal Conductivity of Polyamide[J]. China Plastics, 2017, 31(11): 35⁃40. | |
| 45 | TSUTSUMI N, TAKEUCHI N, KIYOTSUKURI T. Measurement of Thermal Diffusivity of Filler⁃Polyimide Composites by Flash Radiometry[J]. Journal of Polymer Science Part B Polymer Physics, 1991, 29(9):1 085⁃1 093. |
| 46 | 周文英, 齐暑华, 徐春潮, 等. Al2O3对导热硅橡胶性能的影响[J]. 合成橡胶工业, 2006, 29(6): 462⁃465. |
| ZHOU W Y, QI S H, XU C C, et al. The Effect of Al2O3 on The Properties of Thermally Conductive Silicone Rubber[J]. China Synthetic Rubber Industry, 2006, 29(6): 462⁃465. | |
| 47 | 余浩斌, 张婧婧, 何穗华, 等. 石墨烯微片的尺寸和形态对聚丙烯基纳米复合材料导电导热性能的影响[J]. 中国塑料, 2018, 32(3): 51⁃58. |
| YU H B, ZHANG J J, HE S H, et al. Effects of Size and Shape of Graphene Nanoplatelet(GNP) on Electrical and Thermal Conductivity of PP/GNP Nanocomposites[J]. China Plastics, 2018, 32(3): 51⁃58. | |
| 48 | 陈亚男. 金刚石⁃硅橡胶热界面复合材料的制备与性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. |
| 49 | DONNAY M, TZAVALAS S, LOGAKIS E. Boron Nitride Filled Epoxy with Improved Thermal Conductivity and Dielectric Breakdown Strength[J]. Composites Science and Technology, 2015(110): 152⁃158. |
| 50 | YUNG K C, LIEM H. Enhanced Thermal Conductivity of Boron Nitride Epoxy⁃Matrix Composite Through Multi⁃Modal Particle Size Mixing[J]. Journal of Applied Polymer Science, 2007, 106(6): 3 587⁃3 591. |
| 51 | 刘 汉. 膨胀石墨/聚丙烯导热高分子复合材料的研究[D]. 广州:华南理工大学, 2012. |
| 52 | 邢荣芬, 陈明敬, 邵 宇, 等. 填充型导热高分子复合材料的研究进展[J]. 塑料工业, 2017, 45(9): 15⁃27. |
| XING R F, CHEN M J, SHAO Y, et al. Research Pro⁃gress in Filled⁃Type Thermal Conductive Polymer Composite[J]. China Plastics Industry, 2017, 45(9): 15⁃27. | |
| 53 | 刘圣楠, 蔡会武, 王行行, 等. 环氧树脂复合材料的制备及其导热性能研究[J]. 绝缘材料, 2019, 52(2): 19⁃23. |
| LIU S N, CAI H W, WANG X X, et al. Preparation and Thermal Conductivity of Epoxy Resin Composites[J]. Insulating Materials, 2019, 52(2): 19⁃23. | |
| 54 | XU F, CUI Y X, BAO D, et al. A 3D Interconnected Cu Network Supported by Carbon Felt Skeleton for Highly Thermally Conductive Epoxy Composites[J]. Chemical Engineering Journal, 2020, 388: 124687. |
| 55 | HONGA J P, YOON S W, HWANG T, et al. High Thermal Conductivity Epoxy Composites with Bimodal Distribution of Aluminum Nitride and Boron Nitride Fillers[J]. Thermochimica Acta, 2012, 537: 70⁃75. |
| 56 | WATTANAKUL K, MANUSPIYA H, YANUMET Y. The Adsorption of Cationic Surfactants on BN Surface: Its Effects on The Thermal Conductivity and Mechanical Properties of BN⁃Epoxy Composite[J]. Colloids and Surfaces a Physicochemical and Engineering Aspects, 2010, 369(1/3):203⁃210. |
| 57 | TENG C C, MA C C, CHIOU K C, et al. Synergetic Effect of Hybrid Boron Nitride and Multi⁃Walled Carbon Nanotubes on The Thermal Conductivity of Epoxy Composites[J]. Materials Chemistry and Physics, 2011, 126(3): 722⁃728. |
| 58 | HUANG T, ZENG X L, YAO Y M, et al. Boron Nitride@Graphene Oxide Hybrids for Epoxy Composites with Enhanced Thermal Conductivity[J]. RSC Advances, 2016, 6(42):35 144⁃36 217. |
| 59 | ZHANG Y H, CHOI J R, PARK S J. Interlayer Polymerization in Amine⁃Terminated Macromolecular Chain⁃Grafted Expanded Graphite for Fabricating Highly Thermal Conductive and Physically Strong Thermoset Composites for Thermal Management Applications[J]. Composites Part A: Applied Science and Manufacturing,2018,109:498⁃506. |
| 60 | 刘海林,马晓燕,袁 莉,等. 分子自组装研究进展[J]. 材料科学与工程, 2004,22(2):308⁃311. |
| LUI H L, MA X Y, YUAN L, et al. Molecule Self⁃assembly Technology and Its Research Advances[J]. Journal of Materials Science & Engineering, 2004,22(2):308⁃311. | |
| 61 | 熊高虎,刘佳鸿,孙 静. 碳纳米管/环氧树脂复合材料的静电自组装制备及性能[J]. 高分子材料科学与工程,2013,29(1):136⁃139. |
| XIONG G H, LIU J H, SUN J. Electrostatic Self⁃Assembly Preparation and Properties of Carbon Nanotube/Epoxy Composites[J]. Polymer Materials Science & Engineering, 2013,29(1):136⁃139. | |
| 62 | 余 鑫,王跃川. 石墨烯/聚苯乙烯导热复合材料的制备[J]. 塑料工业, 2018,46(4):156⁃159. |
| YU X, WANG Y C. Preparation and Thermal Conductivity of G/PS Composites[J]. China Plastics Industry, 2018,46(4):156⁃159. | |
| 63 | 刘彦波, 苏朋超, 王志谦, 等. 填充型导热高分子研究进展[J]. 河南化工, 2014, 31(3): 21⁃24. |
| LIU Y B, SU P C, WANG Z Q, et al. Research Progress of Filled Thermal Conducting Polymers[J]. Henan Chemical Industry, 2014, 31(3): 23⁃24. | |
| 64 | ZHANG X R, XIE X Y, CAI X Z, et al. Graphene⁃Perfluoroalkoxy Nanocomposite with High Through⁃Plane Thermal Conductivity Fabricated by Hot⁃Pressing[J]. Nanomaterials, 2019, 9(9): 1 320. |
| 65 | 裴 凯, 田晓慧, 孙金煜, 等. 纤维素基导热复合材料的制备及性能研究[J]. 化工新型材料, 2021, 49(5): 222⁃226. |
| PEI K, TIAN X H, SUN J Y, et al. Preparation and Property of Cellulose⁃Based Thermal Conductive Composite Material[J]. New Chemical Materials, 2021, 49(5): 222⁃226. | |
| 66 | 李 晔. 水玻璃基无机保温泡沫的制备与性能研究[D]. 合肥: 中国科学技术大学, 2016. |
| 67 | HU Y, DU G P, CHEN N. A Novel Approach for Al2O3/Epoxy Composites with High Strength and Thermal Conductivity[J]. Composites Science and Technology, 2016, 124: 36⁃43. DOI:10.1016/j.compscitech.2016.01.010 . |
| 68 | HU M C, FENG J Y, WU J M. Thermally Conductive PP/AlN Composites with A 3⁃D Segregated Structure[J]. Composites Science and Technology, 2015, 110: 26⁃34. DOI:10.1016/j.compscitech.2015.01.019 . |
| [1] | 张强, 张健, 林琳, 刘静, 王天贺. 相变储能微胶囊壁材传热强化措施研究进展[J]. 中国塑料, 2022, 36(7): 187-196. |
| [2] | 黄雪梅, 柳和生, 黄兴元, 余忠, 江诗雨. U型件的气体辅助挤出成型工艺的数值模拟与实验研究[J]. 中国塑料, 2022, 36(7): 93-103. |
| [3] | 杨小龙, 陈文静, 李永青, 闫晓堃, 王修磊, 谢鹏程, 马秀清. 导电型聚合物/石墨烯复合材料的研究进展[J]. 中国塑料, 2022, 36(6): 165-173. |
| [4] | 魏辽. 水溶性高分子材料在油气田压裂中的应用研究进展[J]. 中国塑料, 2022, 36(5): 149-157. |
| [5] | 刘文, 师文钊, 刘瑾姝, 陆少锋, 周红娟. 电致形状记忆复合材料研究进展[J]. 中国塑料, 2022, 36(4): 175-189. |
| [6] | 彭博, 肖运彬, 顾家宝, 陈梓钧, 唐雁煌, 朱刚, 徐焕翔. 聚合物/石墨烯复合材料制备与性能研究进展[J]. 中国塑料, 2022, 36(4): 190-197. |
| [7] | 罗飞, 李翠娟, 刘卓佳, 刘雨欣, 石素宇, 党旭丹, 刘春太, 赵永涛. 聚碳酸酯动态黏弹性能与分子取向态的关系[J]. 中国塑料, 2021, 35(9): 81-86. |
| [8] | 臧晓玲, 温变英. 高分子材料绿色制造与可持续发展[J]. 中国塑料, 2021, 35(8): 9-20. |
| [9] | 吴朝廷, 陈华艳, 张文欣, 吕晓龙. 碳纳米管分散强化PVDF复合薄膜导热性能探究[J]. 中国塑料, 2021, 35(7): 25-31. |
| [10] | 钟罗浩, 匡唐清, 赖家美, 柳和生, 赖德炜. 成型工艺对短玻璃纤维增强聚丙烯注塑管件的壁厚分布及玻璃纤维取向的影响[J]. 中国塑料, 2021, 35(5): 11-16. |
| [11] | 郭金强, 王富玉, 张玉霞. 高阻隔高分子材料研究进展[J]. 中国塑料, 2021, 35(5): 146-155. |
| [12] | 张一辉, 王从龙, 陈士宏, 王向东. 聚醚酰亚胺发泡技术研究进展[J]. 中国塑料, 2021, 35(4): 124-132. |
| [13] | 张静, 李小晴, 周海瑛, 江文正, 钟金环, 李文珠, 张文标. PP/EVA复合发泡材料的制备与性能研究[J]. 中国塑料, 2021, 35(3): 23-29. |
| [14] | 朱瑞霞, 甘露, 武芷萱. 几种常见给水PVC工程管道的对比分析[J]. 中国塑料, 2021, 35(3): 50-58. |
| [15] | 徐萌, 高达利, 张师军. 食品包装高分子材料技术进步与升级[J]. 中国塑料, 2021, 35(3): 74-82. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备11010802034965号
京ICP备13020181号-2