
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2022, Vol. 36 ›› Issue (9): 193-201.DOI: 10.19491/j.issn.1001-9278.2022.09.025
• 综述 • 上一篇
收稿日期:
2022-05-16
出版日期:
2022-09-26
发布日期:
2022-09-26
作者简介:
李卓琳,lizhuolin2022@163.com
LI Zhuolin1(), MU Wenying2, DING Yumei1
Received:
2022-05-16
Online:
2022-09-26
Published:
2022-09-26
摘要:
从标准及不同应用场景的使用需求介绍了医用防辐射服,重点综述了含铅防辐射服的应用现状与存在问题和防辐射服的制备方法(纺丝法、涂覆法及热压成型等),同时还对含有不同无铅屏蔽材料(如稀土元素、钨、铋、碳纳米管、聚酰亚胺、聚醚醚酮等)防辐射复合材料的研究现状及发展前景进行了展望。
中图分类号:
李卓琳, 牟文英, 丁玉梅. 医用防辐射服研究现状及发展趋势[J]. 中国塑料, 2022, 36(9): 193-201.
LI Zhuolin, MU Wenying, DING Yumei. Research status and development trend of medical radiation protective clothing[J]. China Plastics, 2022, 36(9): 193-201.
放射检查类型 | 个人防护用品 | 辅助防护设施 |
---|---|---|
隔室透视、摄影 | — | — |
口内牙片摄影 | — | — |
牙科全景体层摄影、口腔CT | — | — |
同室透视、摄影 | 铅橡胶围裙,选配:铅橡胶帽子、颈套、手套、眼镜 | 或铅防护屏风 |
CT扫描(隔室) | — | — |
床旁摄影 | 铅橡胶围裙,选配铅橡胶帽子、颈套 | 或铅防护屏风 |
骨科复位等设备旁操作 | 铅橡胶围裙,选配:铅橡胶帽子、颈套、手套 | 移动铅防护屏风 |
介入放射学操作 | 铅橡胶围裙,铅橡胶帽子、颈套、眼镜,选配:手套 | 铅悬挂防护屏、铅防护吊帘、床侧防护帘、 床侧防护屏选配:移动铅防护屏风 |
放射检查类型 | 个人防护用品 | 辅助防护设施 |
---|---|---|
隔室透视、摄影 | — | — |
口内牙片摄影 | — | — |
牙科全景体层摄影、口腔CT | — | — |
同室透视、摄影 | 铅橡胶围裙,选配:铅橡胶帽子、颈套、手套、眼镜 | 或铅防护屏风 |
CT扫描(隔室) | — | — |
床旁摄影 | 铅橡胶围裙,选配铅橡胶帽子、颈套 | 或铅防护屏风 |
骨科复位等设备旁操作 | 铅橡胶围裙,选配:铅橡胶帽子、颈套、手套 | 移动铅防护屏风 |
介入放射学操作 | 铅橡胶围裙,铅橡胶帽子、颈套、眼镜,选配:手套 | 铅悬挂防护屏、铅防护吊帘、床侧防护帘、 床侧防护屏选配:移动铅防护屏风 |
元素 | 屏蔽材料 | 基材 | 屏蔽性能 | 参考文献 |
---|---|---|---|---|
La | La2O3 | PP | 0.22 mm Pb;120 kVp | [ |
Gd | Gd(MAA)3 | TPU | 0.041 mm Pb;120 kV | [ |
Gd2O3(悬浮液) | — | X射线屏蔽率95 %;50~100 kVp | [ | |
Sm | Sm2O3 | 丁基乳胶 | 0.17 mmPb;120 kV | [ |
TPU | 0.4 mmPb;120 kV | [ |
元素 | 屏蔽材料 | 基材 | 屏蔽性能 | 参考文献 |
---|---|---|---|---|
La | La2O3 | PP | 0.22 mm Pb;120 kVp | [ |
Gd | Gd(MAA)3 | TPU | 0.041 mm Pb;120 kV | [ |
Gd2O3(悬浮液) | — | X射线屏蔽率95 %;50~100 kVp | [ | |
Sm | Sm2O3 | 丁基乳胶 | 0.17 mmPb;120 kV | [ |
TPU | 0.4 mmPb;120 kV | [ |
屏蔽材料 | 基材 | 屏蔽性能 | 参考文献 |
---|---|---|---|
W、Co等多种金属混合 | 橡胶或聚氯乙烯 | 辐射束阻挡率60 %以上;100 kV | [ |
W/Gd2O3 | 聚氨酯树脂 | X射线防护效率60 %以上;60 ~100 keV | [ |
W | 芳纶双层织物 | 屏蔽效率72.21%;120 kVp | [ |
橡胶 | 屏蔽效率99.4 %;6 MeV | [ | |
微纳米非铅金属粉 | 硅橡胶 | 0.25~0.35 mmPb;130 kV | [ |
Bi2O3,BiNaO3,BiN3O9 | 聚氨酯树脂 | 屏蔽效率90 %以上;100 kVp | [ |
Bi2O3、BaSO4 | 聚乙烯树脂 | 0.22 mmPb;100 kVp | [ |
聚氯乙烯 | 0.4 mmPb;100 kVp | [ | |
Bi2O3 | 合成橡胶、TPU树脂 | — | [ |
天然橡胶 | 质量衰减系数7×10-3 m2/kg;662 keVγ | [ | |
三元乙丙橡胶 | 质量衰减系数8.4×10⁃3 m2/kg;662 keV | [ | |
Bi4Ti3O12 | 环氧树脂 | X射线衰减率95 %;100 kVp | [ |
rGO/锰锌铁氧体 | 棉织物 | 最小反射损耗为-51.1 dB;7.05 GHz | [ |
铁 | 硅橡胶 | γ射线屏蔽率25.567 %;60Co豁免源 | [ |
屏蔽材料 | 基材 | 屏蔽性能 | 参考文献 |
---|---|---|---|
W、Co等多种金属混合 | 橡胶或聚氯乙烯 | 辐射束阻挡率60 %以上;100 kV | [ |
W/Gd2O3 | 聚氨酯树脂 | X射线防护效率60 %以上;60 ~100 keV | [ |
W | 芳纶双层织物 | 屏蔽效率72.21%;120 kVp | [ |
橡胶 | 屏蔽效率99.4 %;6 MeV | [ | |
微纳米非铅金属粉 | 硅橡胶 | 0.25~0.35 mmPb;130 kV | [ |
Bi2O3,BiNaO3,BiN3O9 | 聚氨酯树脂 | 屏蔽效率90 %以上;100 kVp | [ |
Bi2O3、BaSO4 | 聚乙烯树脂 | 0.22 mmPb;100 kVp | [ |
聚氯乙烯 | 0.4 mmPb;100 kVp | [ | |
Bi2O3 | 合成橡胶、TPU树脂 | — | [ |
天然橡胶 | 质量衰减系数7×10-3 m2/kg;662 keVγ | [ | |
三元乙丙橡胶 | 质量衰减系数8.4×10⁃3 m2/kg;662 keV | [ | |
Bi4Ti3O12 | 环氧树脂 | X射线衰减率95 %;100 kVp | [ |
rGO/锰锌铁氧体 | 棉织物 | 最小反射损耗为-51.1 dB;7.05 GHz | [ |
铁 | 硅橡胶 | γ射线屏蔽率25.567 %;60Co豁免源 | [ |
屏蔽材料 | 基材 | 屏蔽性能 | 参考文献 |
---|---|---|---|
硼 | 聚乙烯 | 中子屏蔽率65 %以上;0.5 eV, γ射线屏蔽率10 %以上;小于150 keV | [ |
SiC、Si、B4C | EVA层材 | X射线屏蔽率90 %~91%;80keV | [ |
OMMT | 聚酰亚胺 | γ射线屏蔽率10.9 %;0.662 MeV | [ |
聚醚砜包裹多壁碳纳米管 | PEEK泡沫材料 | 特定屏蔽效能17.28 dB·g-1 cm3;12.4 ~18 GHz | [ |
六方氮化硼 | 陶瓷橡胶 | 中子衰减率60.7 % | [ |
聚吡咯 | 府绸 | 电磁屏蔽效能22 dB;2 450 MHz | [ |
屏蔽材料 | 基材 | 屏蔽性能 | 参考文献 |
---|---|---|---|
硼 | 聚乙烯 | 中子屏蔽率65 %以上;0.5 eV, γ射线屏蔽率10 %以上;小于150 keV | [ |
SiC、Si、B4C | EVA层材 | X射线屏蔽率90 %~91%;80keV | [ |
OMMT | 聚酰亚胺 | γ射线屏蔽率10.9 %;0.662 MeV | [ |
聚醚砜包裹多壁碳纳米管 | PEEK泡沫材料 | 特定屏蔽效能17.28 dB·g-1 cm3;12.4 ~18 GHz | [ |
六方氮化硼 | 陶瓷橡胶 | 中子衰减率60.7 % | [ |
聚吡咯 | 府绸 | 电磁屏蔽效能22 dB;2 450 MHz | [ |
类型 | 铅衣 | 非铅金属防辐射服 | 非金属防辐射服 |
---|---|---|---|
优点 | 防辐射性能好,制造工艺成熟,成本低,应用广泛 | 稀土元素防辐射性能较好,质量较铅衣轻,防辐射性能较好 | 质量小,污染小,舒适性好 |
缺点 | 质量大,舒适性差,废弃物有毒性 | 稀土元素分离困难,成本高 | 防辐射性能略逊色,成本高 |
类型 | 铅衣 | 非铅金属防辐射服 | 非金属防辐射服 |
---|---|---|---|
优点 | 防辐射性能好,制造工艺成熟,成本低,应用广泛 | 稀土元素防辐射性能较好,质量较铅衣轻,防辐射性能较好 | 质量小,污染小,舒适性好 |
缺点 | 质量大,舒适性差,废弃物有毒性 | 稀土元素分离困难,成本高 | 防辐射性能略逊色,成本高 |
1 | 国家技术监督局. GB l6757—1997 X射线防护服 [S].北京:中国标准出版社,1997. |
2 | 全国医用X射线设备及用具标准化分技术委员会. 医用诊断X射线辐射防护器具 第3部分:防护服和性腺防护器具 [S].北京:中国标准出版社,2000. |
3 | .医用X射线诊断放射防护要求 [S]. 北京:中国标准出版社,2013. |
4 | 杜利成,何平,周元林,等.防辐射超细钨酸铅的制备及其手套对γ射线屏蔽的研究[J]. 辐射防护, 2012, 32(3): 160⁃164. |
DU Licheng, HE Ping, ZHOU Yuanlin, et al. Study on preparation of ultrafine lead tungstate for radiation protection and γ⁃ray shielding of the gloves[J]. Radiation Protection, 2012, 32(3): 160⁃164. | |
5 | 余巧生,王松涛,樊水平,等.一种新型零重力铅衣辐射防护系统设计[J]. 医疗卫生装备, 2016, 37(10): 19⁃21,25. |
YU Qiaosheng, WANG Songtao, FAN Shuiping, et al. Design of zero⁃gravity lead clothing system for radioprotection[J]. Chinese Medical Equipment Journal, 2016, 37(10): 19⁃21,25. | |
6 | James Collins, Ted Schulte. Exoskeleton frame to support heavy apparel:US,11202479B2 [P]. 2021⁃12⁃21. |
7 | 石英豪.一种防护铅衣:中国,201920850132.1[P]. 2020⁃02⁃18. |
8 | 项长龙.防辐射复合纤维材料的制备与性能研究[D].北京:北京服装学院,2021. |
9 | 楼鹏飞,贾清秀,王法栋,等.防辐射层状复合材料的制备与性能研究[J]. 北京服装学院学报(自然科学版), 2019, 39(2): 10⁃15. |
LOU Pengfei, JIA Qingxiu, WANG Fadong,et al. Preparation and properties of layered composites for radiation protection[J]. Journal of Beijing Institute of Fashion Techno⁃logy(Natural Science Edition), 2019, 39(2): 10⁃15. | |
10 | 张启馨.用于医用X射线防护的含混合镧系元素复合屏蔽材料:中国, 96106434.X [P]. 1997⁃07⁃02. |
11 | 陈嘉新,刘春霞,杨树成.抗菌防辐射面料的研发[J]. 天津纺织科技, 2020, (1): 62⁃64. |
CHEN Jiaxin, LIU Chunxia, YANG Shucheng. Research and development of anti⁃bacterial anti⁃radiation fabrics[J]. Tianjin Textile Science & Technology, 2020, (1): 62⁃64. | |
12 | 陶丽珍,邵东锋.抗电磁辐射织物模拟及最优性能分析[J]. 上海纺织科技, 2019, 47(11): 10⁃13,54. |
TAO Lizhen, SHAO Dongfeng. Simulation and optimi⁃zing analysis of anti⁃electromagnetic radiation fabrics[J]. Shanghai Textile Science & Technology, 2019, 47(11): 10⁃13,54. | |
13 | 孟灵灵,黄新民,杨小红.防电磁辐射功能涤纶防护织物设计及性能研究[J]. 上海纺织科技, 2019, 47(8): 16⁃18. |
MENG Lingling, HUANG Xinmin, YANG Xiaohong. Design and performance of protective polyester fabric for electromagnetic radiation protection[J]. Shanghai Textile Science & Technology, 2019, 47(8): 16⁃18. | |
14 | 张丽娟.石墨烯复合纤维防电磁辐射性能初步研究[J]. 纺织报告, 2020, 39(4): 10⁃12. |
Zhang Lijuan. Study on the electromagnetic radiation resistance of graphene composite fiber[J]. Textile Reports, 2020, 39(4): 10⁃12. | |
15 | 杜国源.稀土防辐射材料研究[J]. 兵器材料科学与工程, 1988,(8): 85⁃88. |
16 | 谷春燕,孙宽,张玉芳,等.防X射线稀土/聚丙烯复合纤维的制备及性能研究[J]. 稀有金属材料与工程, 2017, 46(9): 2 633⁃2 638. |
Gu Chunyan, Sun Kuan, Zhang Yufang, et al. Preparation and properties of X⁃ray shielding rare earth/polypropylene composite fibers[J]. Rare Metal Materials and Enginee⁃ring, 2017, 46(9): 2 633⁃2 638. | |
17 | B T La Ly, Leong Yee⁃Kwong, Leatherday Christopher,et a1.X⁃ray protection, suface chemistry and rheology of ball⁃milled submicron Gd2O3 aqueous suspension[J]. Colloids and Surfaces, 2016, 501: 75⁃82. |
18 | 高世双,吴炼,张燕,等.氧化钐/丁基乳胶防辐射复合材料的制备[J]. 大众科技, 2018, 20(221): 22⁃24,37. |
GAO Shishuang, WU Lian, ZHANG Yan, et al. Preparation of samarium oxide/butyl latex composite material for X⁃ray shielding[J]. Popular Science & Technology, 2018, 20(221): 22⁃24,37. | |
19 | 刘力,吴小飞,范丽,等.氧化钐/热塑性聚氨酯复合材料的防辐射性能及流变性能[J]. 合成橡胶工业, 2008, 31(1): 54⁃57. |
LIU Li, WU Xiaofei, FAN Li, et al. Radiation⁃proof and rheological properties of samarium oxide/thermoplastic polyurethane composites[J]. China Synthetic Rubber Industry, 2008, 31(1): 54⁃57. | |
20 | 夏云峰,李秋峰,包华勇.一种无铅防护服:中国,2020010515813.X [P]. 2020⁃09⁃04. |
21 | 杨涛,高强,姚理荣,等.无铅防护服用面料的制备及其防辐射性能研究[J]. 棉纺织技术, 2021, 49(7): 6⁃10. |
YANG Tao, GAO Qiang, YAO Lirong, et al. Preparation and radiation protection property study of lead⁃free protective fabric[J]. Cotton Textile Technology, 2021, 49(7): 6⁃10. | |
22 | Kim Seon⁃Chill, Jun⁃Sik Son. Manufacturing and performance evaluation of medical radiation shielding fiber with plasma thermal spray coating technology[J].Scientific Reports, 2021, 11: 22418. |
23 | Yuya Yanagi, Mikoto Tamura, Hajime Monzen,et a1. Application of real⁃time variable shape tungsten rubber for nail radiation protection in the total skin electron beam (TSEB) therapy[J]. 日本放射線技術学会雑誌,2021,77(2): 145⁃152. |
24 | 袁祖培,陈洁,刘冬妮,等.一种连体式射线防护服:中国,201721781452.3 [P]. 2019⁃12⁃19. |
25 | 朱柏生.防辐射硅胶材料及其生产工艺:中国,201510718971.4 [P].2017⁃05⁃10. |
26 | Ju Hee Kang, Song Hee Oh, Jung⁃ll Oh, et a1. Protection evaluation of non⁃lead radiation⁃shielding fabric: preliminary exposure⁃dose study[J]. Oral Radialogy, 2019, 35: 224⁃229. |
27 | KimSeon Chill, Jeong Ryeol Choi, Byeong Kyou Jeon. Physical analysis of the shielding capacity for a lightweight apron designed for shielding low intensity scattering X⁃rays[J]. Scientific Reports, 2016, 6: 1⁃7. |
28 | Anil Kumar Singh, Rakesh Kumar Singh, Bhupesh Sharma, et a1. Characterization and biocompatibility studies of lead free X⁃ray shielding polymer composite for healthcare application[J].Radiation Physics and Chemistry, 2017, 138: 9⁃15. |
29 | 陈晓峰,王礼学,万源,等.新型无铅X射线防护材料及其制备方法与应用:中国,202011299822 .6[P]. 2021⁃04⁃06. |
30 | Donruedee Toyen, Anawat Rittirong, Worawat Poltabtim, et a1. Flexible, lead⁃free, gamma⁃shielding materials based on natural rubber/metal oxide composites[J].Iranian Polymer Journal, 2018, 27: 33⁃41. |
31 | Worawat Poltabtim, Ekachai Wimolmala, Kiadtisak Saenboonruang. Properties of lead⁃free gamma⁃ray shielding materials from metal oxide/EPDM rubber composites[J].Radiation Physics and Chemistry, 2018, 153: 1⁃9. |
32 | Le Yu, Pei Lay Yap, Alexandre Santons, et a1. Lightweight bismuth titanate (Bi4Ti3O12) nanoparticle⁃epoxy composite for advanced lead⁃free X⁃ray radiation shielding[J]. Nano Materials, 2021,4: 7 471⁃7 478. |
33 | 张潇,王黎明,徐丽慧,等.rGO掺杂锰锌铁氧体复合物的吸波性能及对棉织物的涂层整理[J]. 印染, 2021, 47(1): 44⁃49. |
ZHANG Xiao, WANG Liming, XU Lihui, et al. Microwave absorbing properties of rGO doped Mn⁃Zn ferrite composites and their cotton coating[J]. China Dyeing and Finishing, 2021, 47(1): 44⁃49. | |
34 | 张晶晶,司明强,任金秋. 铁/硅橡胶防辐射复合材料的制备及性能[J]. 宁夏师范学院学报, 2019, 40(7): 29⁃32. |
35 | ZHANG Jingjing, SI Mingqiang, REN Jinqiu. Preparation and properties of iron/silicone rubber anti⁃radiation composite materials[J]. Journal of Ningxia Normal University, 2019, 40(7): 29⁃32. |
36 | 王玉敏,张旭,杨丽娜,等.一种具有防辐射功能的连续单丝硼纤维增强含硼聚乙烯复合材料及其制备方法:中国,202011349519.2 [P]. 2021⁃03⁃19. |
37 | Mansour Almurayshid, Yousif Alssalim, Farouk Aksouh, et a1.Development of new lead⁃free composite materials as potential radiation shields[J]. Materials,2021,14: 4 957⁃4 966. |
38 | 宗德超.聚酰亚胺基复合材料的制备与抗辐射性能研究[D].江苏:东南大学,2016. |
39 | 韩冰.轻质聚醚醚酮复合材料的制备及其电磁屏蔽性能研究[D].吉林:吉林大学,2020. |
40 | Tonguç Özdemir,Seda Nur Yılmaz. Hexagonal boron nitride and polydimethylsiloxane: A ceramic rubber compo⁃site material for neutron shielding[J]. Radiation Physics and Chemistry,2018,152: 93⁃99. |
41 | PomposoJ A, Rodríguez J, Grande H. Polypyrrole⁃based conducting hot melt adhesives for EMI shielding applications[J]. Synthetic Metals,1999,104(2): 107⁃111. |
42 | 王利君,毛鹏丽.防电磁辐射聚吡咯/棉织物的制备及其性能[J]. 纺织学报, 2017, 39(9): 95⁃101. |
WANG Lijun, MAO Pengli.Preparation and properties of polypyrrole/cotton anti⁃electromagnetic radiation fabric[J]. Journal of Textile Research, 2017, 39(9): 95⁃101. | |
43 | 刘义,李树峰,张策,等.碳纳米管对碳纤维复合材料防辐射性能的影响[J]. 天津纺织科技, 2021, (4): 40⁃43. |
LIU Yi, LI Shufeng, ZHANG Ce,et al. Influence of carbon nanotube matrix/interface modification on the radiation resistance of carbon fiber/epoxy resin composites[J]. Tianjin Textile Science & Technology, 2021, (4): 40⁃43. |
[1] | 贾明印, 董贤文, 王佳明, 陈轲. 浸渍方式对纤维增强聚酰胺6复合材料真空袋压成型工艺及性能的影响[J]. 中国塑料, 2022, 36(9): 1-6. |
[2] | 张林, 夏章川, 何亚东, 信春玲, 王瑞雪, 任峰. 等离子体射流载气流量大小对玻璃纤维改性效果影响的研究[J]. 中国塑料, 2022, 36(9): 7-15. |
[3] | 高永红, 彭梦蜜, 金清平. 温度对玻璃纤维增强聚合物筋与混凝土黏结性能影响试验研究[J]. 中国塑料, 2022, 36(9): 16-23. |
[4] | 董玥, 董霄, 朱德兆, 杨延翔, 罗琛, 李阳, 李锦山. 聚酰亚胺发展概况与应用展望[J]. 中国塑料, 2022, 36(9): 85-95. |
[5] | 马国成, 何圳, 陈少军. 醋酸纤维素的降解性研究进展[J]. 中国塑料, 2022, 36(9): 111-121. |
[6] | 余大荣, 辛勇. 超高分子量聚乙烯改性研究进展[J]. 中国塑料, 2022, 36(8): 135-145. |
[7] | 陈佰全, 郑友明, 田际波, 张磊, 王金松, 林夏洁, 段亚鹏. 高含量玻璃纤维增强阻燃聚酰胺材料的制备与性能[J]. 中国塑料, 2022, 36(8): 42-48. |
[8] | 杜青, 何祎, 余坦竟, 蓝艳姣, 赵彦芝, 周菊英. 取向PAN/MWCNTs与热塑性聚烯烃复合材料的制备及表征[J]. 中国塑料, 2022, 36(8): 49-55. |
[9] | 冯冰涛, 王晓珂, 张信, 孙国华, 汪殿龙, 侯连龙, 马劲松. 连续碳纤维增强热塑性复合材料制备与应用研究进展[J]. 中国塑料, 2022, 36(7): 165-173. |
[10] | 周舒毅, 朱敏, 刘忆颖, 曹舒惠, 蔡启轩, 聂慧, 张玉霞, 周洪福. 高分子止血材料研究进展[J]. 中国塑料, 2022, 36(7): 74-84. |
[11] | 杨一飞, 王明欢, 李杰, 何亚东, 信春玲, 任峰. 熔融浸渍工艺参数对纤维束渗透率影响的研究[J]. 中国塑料, 2022, 36(7): 85-92. |
[12] | 黄雪梅, 柳和生, 黄兴元, 余忠, 江诗雨. U型件的气体辅助挤出成型工艺的数值模拟与实验研究[J]. 中国塑料, 2022, 36(7): 93-103. |
[13] | 董少策, 李承高, 张旭锋, 咸贵军. 植物纤维纸蜂窝制备的环境影响评价[J]. 中国塑料, 2022, 36(6): 108-115. |
[14] | 李杰, 徐然, 任峰, 杨一飞, 信春玲, 何亚东. 连续玻纤增强聚丙烯预浸带熔融浸渍过程纤维断裂研究[J]. 中国塑料, 2022, 36(6): 69-76. |
[15] | 孙文博, 信春玲, 何亚东, 翟玉娇, 闫宝瑞. 玻璃纤维增强PBT微发泡工艺对其制品泡孔结构的影响[J]. 中国塑料, 2022, 36(5): 1-7. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||