京公网安备11010802034965号
京ICP备13020181号-2
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2025, Vol. 39 ›› Issue (10): 121-128.DOI: 10.19491/j.issn.1001-9278.2025.10.019
• 塑料与环境 • 上一篇
收稿日期:2025-03-21
出版日期:2025-10-26
发布日期:2025-10-21
通讯作者:
徐芳(1991—),女,副研究员,从事可降解高分子材料等研究工作,xufang@btbu.edu.cn基金资助:
WANG Qiong, XU Fang(
), WENG Yunxuan(
)
Received:2025-03-21
Online:2025-10-26
Published:2025-10-21
Contact:
XU Fang, WENG Yunxuan
E-mail:xufang@btbu.edu.cn;wyxuan@th.btbu.edu.cn
摘要:
随着聚乳酸(PLA)的产量增加、后端应用领域的扩大,废旧PLA的化学回收引起了国内外的广泛关注。本文总结了PLA的基本性能、常用合成及化学回收方法的研究进展,重点分析了PLA各种解聚方法机理、催化剂和产物种类,总结其优缺点以及PLA化学回收的未来发展趋势。
中图分类号:
王琼, 徐芳, 翁云宣. 聚乳酸的合成与解聚回收研究进展[J]. 中国塑料, 2025, 39(10): 121-128.
WANG Qiong, XU Fang, WENG Yunxuan. Progress in synthesis, depolymerization and recycle of polylactic acid[J]. China Plastics, 2025, 39(10): 121-128.
| [1] | Islam M M, Chaudry S, Thornton A W, et al. Environmental footprint of polylactic acid production utilizing cane⁃sugar and microalgal biomass: an LCA case study[J]. Journal of Cleaner Production, 2025,496:145132. |
| [2] | Gama N, Godinho B, Timmons A B, et al. Recycling cork/PLA bio⁃composites through dissolution precipitation method[J]. Recycling, 2025,10(1):13. |
| [3] | Rosli N A, Chen R S, Dufresne A, et al. Biobased rubber toughened poly(lactic acid) blend for sustainable packaging films: the role of optical purity of poly(lactic acid)[J]. Journal of Applied Polymer Science, 2024,141: e56113. |
| [4] | Bouapao L, Tsuji H, Tashiro K, et al. Crystallization, spherulite growth, and structure of blends of crystalline and amorphous poly(lactide)[J]. Polymer, 2009,50(16):4 007⁃4 017. |
| [5] | 张雨辰. 生物降解塑料与厨余垃圾共堆肥降解及生物强化机制[D].上海:华东师范大学,2024. |
| [6] | Nakamura K, Tomita T, Abe N, et al. Purification and characterization of an extracellular poly(L⁃lactic acid) depolymerase from a soil isolate, Amycolatopsis sp. Strain K104⁃1[J]. Applied and Environmental Microbiology, 2002,67(1):345⁃353. |
| [7] | Velazquez⁃Infante J C, Gamez⁃Perez J, Franco⁃Urquiza E A, et al. Effect of the unidirectional drawing on the thermal and mechanical properties of PLA films with different L⁃isomer content[J]. Journal of Applied Polymer Science, 2012,127(4):2 661⁃2 669. |
| [8] | Song F C, Wu L B. Synthesis of high molecular weight poly(L⁃lactic acid) via melt/solid polycondensation: Intensification of dehydration and oligomerization during melt polycondensation[J]. Journal of Applied Polymer Science, 2011, 120(5):2 780⁃2 785. |
| [9] | Hu Y, Daoud W A, Cheuk K K, et al. Newly developed techniques on polycondensation, ring⁃opening polymerization and polymer modification: Focus on Poly(Lactic Acid)[J]. Materials, 2016, 9(3):133. |
| [10] | Kumar S S, Anthony P, Chowdhury A. High molecular weight poly(lactic acid) synthesized with apposite catalytic combination and longer time[J]. Oriental Journal of Chemistry, 2018, 34(4):1 984⁃1 990. |
| [11] | Moon S I, Lee CW, Miyamoto M, et al. Melt polycondensation of L⁃lactic acid with Sn(Ⅱ) catalysts activated by various proton acids: a direct manufacturing route to high molecular weight poly(L⁃lactic acid)[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2000, 38(9):1 673⁃1 679. |
| [12] | Chen G X, Kim H S, Kim E S, et al. Synthesis of high⁃molecular⁃weight poly(L⁃lactic acid) through the direct condensation polymerization of L⁃lactic acid in bulk state[J]. European Polymer Journal, 2006, 42(2):468⁃472. |
| [13] | Yahyaee N, Javadi A, Garmabi H, et al. Effect of two⁃step chain extension using joncryl and PMDA on the rheological properties of poly(lactic acid)[J]. Macromolecular Materials and Engineering, 2019,305:1900423. |
| [14] | Gupta A P, Kumar V. New emerging trends in synthetic biodegradable polymers⁃polylactide: A critique[J]. European Polymer Journal, 2007, 43(10):4 053⁃4 074. |
| [15] | 许明奕, 逢宇帆, 邢 涛, 等. 聚乳酸合成方法的研究进展及市场分析[J]. 应用化工,2022,51(12):3 614⁃3 618,3 624. |
| Xu M Y, Feng Y F, Xing T, et al. Research progress and market analysis of polylactic acid synthesis methods[J]. Applied Chemical Industry,2022,51(12):3 614⁃3 618,3 624. | |
| [16] | Gupta B, Revagade N, Hilborn J. Poly(lactic acid) fiber: an overview[J]. Progress in Polymer Science, 2007, 32(4):455⁃482. |
| [17] | Zhang X Y, Jones G, Hedrick L, et al. Fast and selective ring⁃opening polymerizations by alkoxides and thioureas[J]. Nature Chemistry, 2016,8:1 047⁃1 053. |
| [18] | 秦宜轩. 生物可降解PLA复合材料的制备及性能研究[D]. 长春:长春工业大学, 2024. |
| [19] | Balla E, Daniilidis V, Karlioti G, et al. Poly(lactic acid): a versatile biobased polymer for the future with multifunctional properties⁃from monomer synthesis, polymerization techniques and molecular weight increase to PLA applications[J]. Polymers, 2021, 13(11):1 822. |
| [20] | 梁 源. 金属配合物及其催化环酯开环聚合性能研究[D].长春:吉林大学,2020. |
| [21] | Hermann A, Hill S, Metz A, et al. Next generation of zinc bisguanidine polymerization catalysts towards highly crystalline, biodegradable polyesters[J]. Angewandte Chemie International Edition, 2020,59:21 778⁃21 784. |
| [22] | Bossion A, Heifferon K V, Meabe L, et al. Opportunities for organocatalysis in polymer synthesis via step⁃growth methods[J]. Progress in Polymer Science, 2019,90:164⁃210. |
| [23] | Yu J, Xu S, Liu B, et al. PLA bioplastic production: from monomer to the polymer[J]. European Polymer Journal, 2023,193:112076. |
| [24] | Stefaniak K, Masek A. Green copolymers based on poly(lactic acid)⁃short review[J]. Materials, 2021, 14(18):5 254. |
| [25] | Ding Z, Wang M, Zhou Z, et al. Controlled cationic ring⁃opening polymerization of L⁃lactide by organic ion pair: novel approach to isotactic⁃rich and crystalline polylactide[J]. Science China Chemistry, 2025,68(1):394⁃402. |
| [26] | 周先悦. 聚乳酸(PLA)、双酚A型聚碳酸酯(BPA⁃PC)的化学降解策略研究[D]. 青岛:青岛科技大学, 2022. |
| [27] | Tsuji H, Daimon H, Fujie K. A new strategy for recycling and preparation of poly(l⁃lactic acid): hydrolysis in the melt[J]. Biomacromelecules, 2003,4(3):835⁃840. |
| [28] | 高阿红, 成 博, 刘 峰, 等. 基于原子力显微镜的聚乳酸降解研究[J]. 包装工程, 2021,42(7):69⁃75. |
| GAO A H, CHENG B, LIU F, et al. Degradation of polylactic acid based on atomic force microscopy[J]. Packaging Engineering, 2021,42(7):69⁃75. | |
| [29] | Tsuji H. Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications[J]. Macroolecular Bioscience, 2005,5(7):569⁃597. |
| [30] | Hirao K, Shimamoto Y, Nakatsuchi Y, et al. Hydrolysis of poly(L⁃lactic acid) using microwave irradiation[J]. Polymer Degradation and Stability, 2010,95(1):86⁃88. |
| [31] | Al⁃Sabagh A M, Yehia F Z, Eissa M F, et al. Glycolysis of poly(ethylene terephthalate) catalyzed by the Lewis base ionic liquid [Bmim][OAc][J]. Industrial & Engineering Chemistry Research, 2014,53(48):18 443⁃18 451. |
| [32] | Wu W, Zhai H, Wu K, et al. Cheap organocatalyst diphenyl phosphate for efficient chemical recycling of poly(lactic acid), other polyesters and polycarbonates[J]. Chemical Engineering Journal, 2024,480:148131. |
| [33] | Weng Y, Hong C B, Zhang Y, et al. Catalytic depolymerization of polyester plastics toward closed⁃loop recycling and upcycling[J]. Green Chemistry, 2024,26(2):571⁃592. |
| [34] | Carne S A, Collinson S R. The selective recycling of mixed plastic waste of polylactic acid and polyethylene terephthalate by control of process conditions[J]. European Polymer Journal, 2011,47(10):1 970⁃1 976. |
| [35] | Liu H, Song X, Liu F, et al. Ferric chloride as an efficient and reusable catalyst for methanolysis of poly(lactic acid) waste[J]. Journal of Polymer Research, 2015,22(7):135. |
| [36] | Petrus R, Bykowski D, Sobota P. Solvothermal alcoholysis routes for recycling polylactide waste as lactic acid esters[J]. ACS Catalysis, 2016,6(8):5 222⁃5 235. |
| [37] | Santulli F, Lamberti M, Annunziata A, et al. The contribution of commercial metal amides to the chemical recycling of waste polyesters[J]. Polymer Chemistry, 2020,11(15):2 625⁃2 629. |
| [38] | Cheung E, Alberti C, Enthaler S. Chemical recycling of end⁃of⁃life poly(lactide) via zinc⁃catalyzed depolymerization and polymerization[J]. ChemistryOpen, 2020,9(12):1 224⁃1 228. |
| [39] | Petrus R, Bykowski D, Sobota P. Solvothermal alcoholysis routes for recycling polylactide waste as lactic acid esters[J]. ACS Catalysis, 2016,6(8):5 222⁃5 235. |
| [40] | Alberti C, Damps N, Meibner R, et al. Selective degradation of end⁃of⁃life poly(lactide) via alkali⁃metal⁃halide catalysis[J]. Advanced Sustainable Systems, 2020, 4:1900081. |
| [41] | Yang R, Xu G, Dong B, et al. A “polymer to polymer” chemical recycling of PLA plastics by the “DE⁃RE polymerization” strategy[J]. Macromolecules, 2022,55:1 726⁃1 735. |
| [42] | Liu S, Liu J, Zhang Z, et al. Zinc catalyst for chemical upcycling of PLA wastes: novel industrial monomer resource toward poly(ester⁃amide)[J]. Macromolecules, 2024,57:4 662⁃4 669. |
| [43] | Luo Z X, Tian G Q, Chen S C, et al. Solvent⁃free one⁃pot recycling of polylactide to usable polymers and their closed⁃loop recyclability[J]. Macromolecules, 2024,57:6 828⁃6 837. |
| [44] | Lamberti F M, Roman⁃Ramirez L A, Dove A P, et al. Methanolysis of poly(lactic acid) using catalyst mixtures and the kinetics of methyl lactate production[J]. Polymers, 2022,14(9):1 763. |
| [45] | Mckeown P, Kamran M, Davidson M G, et al. Organocatalysis for versatile polymer degradation[J]. Green Chemistry, 2020,22(12):3 721⁃3 726. |
| [46] | Alberti C, Damps N, Meibner R, et al. Depolymerization of end⁃of⁃life poly(lactide) via 4⁃dimethylaminopyridine⁃catalyzed methanolysis[J]. Chemistry Select, 2019,4:6 845⁃6 848. |
| [47] | Leibfarth F A, Moreno N, Hawker A P, et al. Transforming polylactide into value⁃added materials[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2012, 50(23):4 814⁃4 822. |
| [48] | Zhang Q, Hu C, Duan R, et al. A recyclable process between a monomer and polyester with a natural catalyst[J]. Green Chemistry, 2022,24(23):9 282⁃9 289. |
| [49] | Liu H, Zhao R, Song X, et al. Lewis acidic ionic liquid [Bmim]FeCl4 as a high efficient catalyst for methanolysis of poly(lactic acid)[J]. Catalysis Letters, 2017,147(9):2 298⁃2 305. |
| [50] | Song X, Bian Z, Hui Y, et al. Zn⁃Acetate⁃containing ionic liquid as highly active catalyst for fast and mild methanolysis of poly(lactic acid)[J]. Polymer Degradation and Stability, 2019,168:108937. |
| [51] | Hubble D, Nordahl S, Zhu T, et al. Solvent⁃assisted poly(lactic acid) upcycling under mild conditions[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(22):8 208⁃8 216. |
| [52] | Liu M, Guo J, Gu Y, et al. Versatile imidazole⁃anion⁃derived ionic liquids with unparalleled activity for alcoholysis of polyester wastes under mild and green conditions[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11):15 127⁃15 134. |
| [53] | Song X, Zhang X, Wang H, et al. Methanolysis of poly(lactic acid) (PLA) catalyzed by ionic liquids[J]. Polymer Degradation and Stability, 2013,98(12):2 760⁃2 764. |
| [54] | Williams D F. Enzymic hydrolysis of polylactic acid[J]. Engineering in Medicine, 1981,10(1):5⁃7. |
| [55] | Akutsu⁃Shigeno Y, Teeraphatpornchai T, Teamtisong K, et al. Cloning and sequencing of poly(DL⁃lactic acid) depolymerase gene from paenibacillus amylolyticus strain TB-13 and its functional expression in Escherichia coli[J]. American Society for Microbiology, 2003,69(5):2 498⁃2 504. |
| [56] | Hajighasemi M, Nocek B P, Tchigvintsev A, et al. Biochemical and structural insights into enzymatic depolymerization of polylactic acid and other polyesters by microbial carboxylesterases[J]. Biomacromolecules, 2016,17(6):2 027⁃2 039. |
| [57] | Kawai F. Emerging strategies in polyethylene terephthalate hydrolase research for biorecycling[J]. Chemistry Sustainability Energy Materials, 2021,14(19):4 115⁃4 122. |
| [58] | Chen C C, Dai L, Ma L, et al. Enzymatic degradation of plant biomass and synthetic polymers[J]. Nature Reviews Chemistry, 2020,4(3):114⁃126. |
| [59] | Zhang M Q, Wang M, Sun B, et al. Catalytic strategies for upvaluing plastic wastes[J]. Chem, 2022,8(11):2 912⁃2 923. |
| [60] | Tian S H, Jiao Y C, Gao Z R, et al. Catalytic amination of polylactic acid to alanine[J]. Jouranl of the American Chemical Society, 2021,143(40):16 358⁃16 363. |
| [61] | Wang S S, Hu J X, Zhao Q, et al. Chemical upcycling of polylactic acid plastic waste into alanine over Ru/CeO2 with decoration of indium[J]. ACS Sustainable Chemistry & Engineering, 2024,12(31):11 754⁃11 766. |
| [62] | Zhao Q, Hu J X, Gui Z Z, et al. Alanine production by chemical upcycling of polylactic acid waste over Fe⁃doped Ru/CeO2 [J]. Chemsuschem, 2025,18:e202401727. |
| [1] | 牛众, 吴遵红, 董海军. 回收PA6改性及其在羽毛球网中的应用研究[J]. 中国塑料, 2025, 39(9): 115-120. |
| [2] | 林明华, 王华, 郭建兵, 郑斌, 王瑶. 环氧大豆油/桐油酸酐协同增韧聚乳酸⁃木质素复合材料[J]. 中国塑料, 2025, 39(9): 38-43. |
| [3] | 谢爽. 聚砜膜材料研究进展[J]. 中国塑料, 2025, 39(8): 124-130. |
| [4] | 张雨森, 帖锐, 李紫鸣, 廖保胜, 郭润奇, 靳玉娟, 张哲, 蒋苏臣. 超支化聚己内酯对聚乳酸/滑石粉共混体系的增韧改性研究[J]. 中国塑料, 2025, 39(8): 26-33. |
| [5] | 刘霖, 寿韬, 廖飞扬, 郑梓康, 冯馨禾, 赵秀英. 高韧性生物基聚乳酸/聚氨酯共混物的制备及性能研究[J]. 中国塑料, 2025, 39(7): 1-5. |
| [6] | 冯硕, 林小淇, 朱艳丽, 高维常, 翁云宣, 张彩丽. 生物降解塑料PBAT的化学回收与生命周期评价:现状、挑战与前景[J]. 中国塑料, 2025, 39(7): 102-111. |
| [7] | 梁永煌, 刘京, 葛冬琦. 我国塑料化学回收产业现状、存在问题及发展趋势[J]. 中国塑料, 2025, 39(7): 112-120. |
| [8] | 赵晓欢, 王岩森, 孙靖山, 邓静倩, 祁丽亚, 侯丹丹, 王春堯, 谈心妤. 疫苗佐剂用阳离子聚乳酸纳微颗粒的制备及调控研究[J]. 中国塑料, 2025, 39(7): 6-11. |
| [9] | 宁丁怡, 赵恬娇, 董亚鹏, 王美珍, 郝新宇, 王波. 共混改性调控聚乳酸结晶及力学性能的研究进展[J]. 中国塑料, 2025, 39(6): 126-132. |
| [10] | 甄琪, 秦子轩, 张恒, 崔景强, 王国锋, 程文胜, 李晗. 医疗包装用聚乳酸熔喷超细纤维材料的退火工艺研究[J]. 中国塑料, 2025, 39(6): 24-30. |
| [11] | 周琦, 李全, 李雅静, 刘新安, 谷新春, 黄守莹. PPC与PLA共混物的流变学及力学性能研究[J]. 中国塑料, 2025, 39(6): 31-35. |
| [12] | 冯硕, 周舒毅, 焦洋, 胡淼, 张若轩, 靳玉娟. 端环氧型超支化聚酯对聚乳酸/滑石粉复合材料性能的影响研究[J]. 中国塑料, 2025, 39(5): 36-42. |
| [13] | 陈业中, 龚德君, 付学俊, 欧阳春平, 张怡, 尹衍升. 润滑剂种类对PBAT/PLA/碳酸钙复合材料力学性能与散发性能的影响[J]. 中国塑料, 2025, 39(5): 77-82. |
| [14] | 李万隆, 杨卫民, 王朔, 李长金, 张杨, 谭晶, 阎华, 李好义. CH⁃S04对熔体微分电纺聚乳酸纤维的增强改性研究[J]. 中国塑料, 2025, 39(2): 1-5. |
| [15] | 周天宇, 李玖重, 张婧帆. 废弃聚异氰脲酸酯泡沫塑料的降解回收及再生利用[J]. 中国塑料, 2025, 39(1): 92-96. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备11010802034965号
京ICP备13020181号-2