京公网安备11010802034965号
京ICP备13020181号-2
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2025, Vol. 39 ›› Issue (10): 113-120.DOI: 10.19491/j.issn.1001-9278.2025.10.018
• 塑料与环境 • 上一篇
收稿日期:2024-11-06
出版日期:2025-10-26
发布日期:2025-10-21
作者简介:全淑苗(1982—),研究员,硕士研究生,研究方向为有机固废化学回收领域,durp@calt11.cn
QUAN Shumiao(
), ZHANG Zhe, YU Dan, DU Runping
Received:2024-11-06
Online:2025-10-26
Published:2025-10-21
摘要:
城市污泥作为有机固废的典型种类之一,其处理处置是城市污水厂污水处理全过程中碳排放的重要环节。在“碳达峰、碳中和”双碳目标挑战下,根据联合国政府间气候变化专门委员会(IPCC)提供的核算准则,结合生命周期评价(LCA),对我国主要的污泥处理处置工艺包括好氧堆肥、厌氧消化、填埋、焚烧和热解等工艺进行了碳排放核算,并根据碳排放产生方式分为直接碳排放、间接碳排放和碳减排3个部分。结果表明,直接碳排放量的顺序为焚烧>热解>厌氧消化>好氧堆肥>填埋,间接碳排放量的顺序为填埋>焚烧>热解>厌氧消化>好氧堆肥,碳减排量的顺序为热解>焚烧>厌氧消化>好氧堆肥>填埋。热解技术作为城市污泥化学回收新兴技术,资源化利用程度高,总碳排放量和净碳排放量分别为694.53、355.11 kgCO2eq/t DS,属于中水平碳排放工艺,是未来发展的重要趋势。
中图分类号:
全淑苗, 张哲, 于丹, 杜闰萍. “双碳”背景下典型有机固废不同处理处置工艺碳排放核算[J]. 中国塑料, 2025, 39(10): 113-120.
QUAN Shumiao, ZHANG Zhe, YU Dan, DU Runping. Research progress in electrospinning technology for polymer⁃based radiative cooling materials[J]. China Plastics, 2025, 39(10): 113-120.
| 国家 | 碳达峰 | 碳中和实现时间/年 | 承诺性质 | ||
|---|---|---|---|---|---|
| 实现时间/年 | 峰值总量/亿吨CO2eq | 人均排放量/亿吨CO2eq | |||
| 中国 | 2030 | 101.75* | 7.27* | 2060 | 政策宣示 |
| 英国 | 1973 | 8.07 | 14.05 | 2050 | 法律规定 |
| 欧盟 | 1990 | 48.54 | 10.28 | 2050 | 提交联合国 |
| 美国 | 2007 | 74.16 | 24.46 | 2050 | 政策宣示 |
| 日本 | 2013 | 14.08 | 11.17 | 2050 | 政策宣示 |
| 韩国 | 2013 | 6.97 | 13.82 | 2050 | 政策宣示 |
| 国家 | 碳达峰 | 碳中和实现时间/年 | 承诺性质 | ||
|---|---|---|---|---|---|
| 实现时间/年 | 峰值总量/亿吨CO2eq | 人均排放量/亿吨CO2eq | |||
| 中国 | 2030 | 101.75* | 7.27* | 2060 | 政策宣示 |
| 英国 | 1973 | 8.07 | 14.05 | 2050 | 法律规定 |
| 欧盟 | 1990 | 48.54 | 10.28 | 2050 | 提交联合国 |
| 美国 | 2007 | 74.16 | 24.46 | 2050 | 政策宣示 |
| 日本 | 2013 | 14.08 | 11.17 | 2050 | 政策宣示 |
| 韩国 | 2013 | 6.97 | 13.82 | 2050 | 政策宣示 |
| 热解油 | 热解气 | 热解碳 | ||||||
|---|---|---|---|---|---|---|---|---|
| 产率 | 碳含量 | 热值/kJ·kg-1 | 产率 | 碳含量 | 热值/kJ·kg-1 | 产率 | 碳含量 | 热值/ kJ·kg-1 |
| 35 % | 61 % | 36 500 | 5 % | 55 % | 12 500 | 60 % | 26 % | 8 500 |
| 热解油 | 热解气 | 热解碳 | ||||||
|---|---|---|---|---|---|---|---|---|
| 产率 | 碳含量 | 热值/kJ·kg-1 | 产率 | 碳含量 | 热值/kJ·kg-1 | 产率 | 碳含量 | 热值/ kJ·kg-1 |
| 35 % | 61 % | 36 500 | 5 % | 55 % | 12 500 | 60 % | 26 % | 8 500 |
| 工艺 | 参数 | 备注 | ||
|---|---|---|---|---|
| 厌氧消化 | 热耗 | 加热热耗 | C1×(T2-T1) | C1:湿污泥比热容,4.01 kJ/(kg .oC); T2:中温消化温度,35 oC; T1:进泥温度,25 oC; |
| 保温热耗 | A×t×λ×(T2-TA)×1.2×V×ρ | 消化池:圆柱体,高30 m,直径16 m; A:消化池的散热面积,1 909.12 m2; V:消化池的体积,6 928.8 m3; ρ:湿污泥密度; t:保温时间,20天; λ:消化池导热系数,2.5 kJ/(m2. h .oC); TA:池外介质温度,25 oC; | ||
| 锅炉热效率 | 84 %[ | 流化床锅炉 | ||
| 电耗 | 机械脱水 | 50 kWh/t DS[ | - | |
| 药耗 | FeCl3添加量(机械脱水) | 30 kg/t DS | 排放因子为8.3 kgCO2eq/kg[ | |
| CaO添加量(机械脱水) | 50 kg/t DS | 排放因子为1.4 kgCO2eq/kg[ | ||
| 污水处理 | 污泥消化液COD含量 | 900 mg/L[ | - | |
| 好氧堆肥 | 电耗 | 40~80 kWh/t DS[ | 取60 kWh/t DS | |
| 污水处理 | 堆肥污水COD含量 | 2 000~6 000 mg/L[ | 取4 000 mg/L | |
| 填埋 | 电耗 | 深度脱水 | 125 kWh/t DS[ | 深度脱水后含水率为60 % |
| 药耗 | 深度脱水 | PAM添加比例为0.15 %[ | PAM为聚丙烯酰胺,排放因子为25 kgCO2eq/kg[ | |
| 油耗 | 填埋 | 21 kg/t DS[ | - | |
| 污水处理 | 深度脱水污水COD含量 | 800 mg/L[ | - | |
| 焚烧 | 热耗 | 干化 | 2 880~3 550 kJ/kgH2O[ | 干化至含水率为30 %,取3 000 kJ/kg H2O,干化机热效率取80 % |
| 电耗 | 干化 | 0.05~0.2 kWh/kg H2O[ | 取0.1 kWh/kg H2O | |
| 焚烧炉焚烧 | 400 kWh/t DS[ | 焚烧炉 | ||
| 药耗 | 烟气处理 | NaOH添加量为17.86 kg/t DS[ | NaOH排放因子为1.602 kgCO2eq/kg[ | |
| 天然气消耗量 | 干化 | 4.5~20 m3/t DS[ | 天然气为辅助燃料,取6 m3/t DS | |
| 污水处理 | 干化污水COD含量 | 2 000 mg/L[ | - | |
| 热解 | 电耗 | 干化 | 0.05~0.2 kWh/kg H2O[ | 取0.1 kWh/kg H2O |
| 热解 | 200~550 kWh/t DS[ | 取300 kWh/t DS | ||
| 热耗 | 干化 | 2 880~3 550 kJ/kgH2O[ | 干化至含水率为20 %,取3 000 kJ/kg H2O,干化机热效率取80 % | |
| 药耗 | 烟气处理 | NaOH添加量为5.36 kg/t DS | 为焚烧工艺烟气处理过程药耗的30 % | |
| 天然气消耗量 | 干化 | 4.5~20 m3/t DS[ | 天然气为辅助燃料,取7 m3/t DS | |
| 污水处理 | 干化污水COD含量 | 2 000 mg/L[ | - |
| 工艺 | 参数 | 备注 | ||
|---|---|---|---|---|
| 厌氧消化 | 热耗 | 加热热耗 | C1×(T2-T1) | C1:湿污泥比热容,4.01 kJ/(kg .oC); T2:中温消化温度,35 oC; T1:进泥温度,25 oC; |
| 保温热耗 | A×t×λ×(T2-TA)×1.2×V×ρ | 消化池:圆柱体,高30 m,直径16 m; A:消化池的散热面积,1 909.12 m2; V:消化池的体积,6 928.8 m3; ρ:湿污泥密度; t:保温时间,20天; λ:消化池导热系数,2.5 kJ/(m2. h .oC); TA:池外介质温度,25 oC; | ||
| 锅炉热效率 | 84 %[ | 流化床锅炉 | ||
| 电耗 | 机械脱水 | 50 kWh/t DS[ | - | |
| 药耗 | FeCl3添加量(机械脱水) | 30 kg/t DS | 排放因子为8.3 kgCO2eq/kg[ | |
| CaO添加量(机械脱水) | 50 kg/t DS | 排放因子为1.4 kgCO2eq/kg[ | ||
| 污水处理 | 污泥消化液COD含量 | 900 mg/L[ | - | |
| 好氧堆肥 | 电耗 | 40~80 kWh/t DS[ | 取60 kWh/t DS | |
| 污水处理 | 堆肥污水COD含量 | 2 000~6 000 mg/L[ | 取4 000 mg/L | |
| 填埋 | 电耗 | 深度脱水 | 125 kWh/t DS[ | 深度脱水后含水率为60 % |
| 药耗 | 深度脱水 | PAM添加比例为0.15 %[ | PAM为聚丙烯酰胺,排放因子为25 kgCO2eq/kg[ | |
| 油耗 | 填埋 | 21 kg/t DS[ | - | |
| 污水处理 | 深度脱水污水COD含量 | 800 mg/L[ | - | |
| 焚烧 | 热耗 | 干化 | 2 880~3 550 kJ/kgH2O[ | 干化至含水率为30 %,取3 000 kJ/kg H2O,干化机热效率取80 % |
| 电耗 | 干化 | 0.05~0.2 kWh/kg H2O[ | 取0.1 kWh/kg H2O | |
| 焚烧炉焚烧 | 400 kWh/t DS[ | 焚烧炉 | ||
| 药耗 | 烟气处理 | NaOH添加量为17.86 kg/t DS[ | NaOH排放因子为1.602 kgCO2eq/kg[ | |
| 天然气消耗量 | 干化 | 4.5~20 m3/t DS[ | 天然气为辅助燃料,取6 m3/t DS | |
| 污水处理 | 干化污水COD含量 | 2 000 mg/L[ | - | |
| 热解 | 电耗 | 干化 | 0.05~0.2 kWh/kg H2O[ | 取0.1 kWh/kg H2O |
| 热解 | 200~550 kWh/t DS[ | 取300 kWh/t DS | ||
| 热耗 | 干化 | 2 880~3 550 kJ/kgH2O[ | 干化至含水率为20 %,取3 000 kJ/kg H2O,干化机热效率取80 % | |
| 药耗 | 烟气处理 | NaOH添加量为5.36 kg/t DS | 为焚烧工艺烟气处理过程药耗的30 % | |
| 天然气消耗量 | 干化 | 4.5~20 m3/t DS[ | 天然气为辅助燃料,取7 m3/t DS | |
| 污水处理 | 干化污水COD含量 | 2 000 mg/L[ | - |
| [1] | 习近平. 在第七十五届联合国大会一般性辩论上的讲话(全文)[EB/OL]. (2020⁃09⁃22)[2024⁃05⁃27].. |
| [2] | 中国国家发展和改革委员会. 中国应对气候变化国家方案 [R]. 北京: 中华人民共和国国家发展和改革委员会, 2007. |
| [3] | 刘 伟, 赵 刚, 林晓虎, 等. 污水厂污泥不同处置过程对碳排放影响分析[J]. 资源节约与环保, 2016 (3): 131⁃132. |
| LIU W, ZHAO G, LIN X H, et al. Analysis of the impact of different disposal processes of sewage plant sludge on carbon emissions [J]. Resources Economization & Environmental Protection, 2016 (3): 131⁃132. | |
| [4] | 郭 瑞, 陈同斌, 张 悦,等. 不同污泥处理与处置工艺的碳排放[J]. 环境科学学报, 2011, 31(4): 673⁃679. |
| GUO R, CHEN T B, ZHANG Y, et al. Carbon emissions from different sewage sludge treatment and disposal processes[J]. Acta Scientiae Circumstantiae, 2011, 31(4): 673⁃679. | |
| [5] | 彭 洁, 袁兴中, 江洪炜,等. 城市污水污泥处置方式的温室气体排放比较分析[J]. 环境工程学报, 2013, 7(6): 2 285⁃2 290. |
| PENG J, YUAN X Z, JIANG H W, et al. Comparative analysis of greenhouse gas emissions from different municipal sewage sludge disposal methods[J]. Chinese Journal of Environmental Engineering, 2013, 7(6): 2 285⁃2 290. | |
| [6] | 林文聪, 赵 刚, 刘 伟,等. 污水厂污泥典型处理处置工艺碳排放核算研究[J]. 环境工程, 2017, 35(7):175⁃179. |
| LIN W C, ZHAO G, LIU W, et al. Research on carbon emission accounting of typical sewage sludge treatment and disposal processes in wastewater treatment plants[J]. Environmental Engineering, 2017, 35(7): 175⁃179. | |
| [7] | 李 欢, 金宜英, 李洋洋. 污水污泥处理的碳排放及其低碳化策略[J]. 土木建筑与环境工程, 2011, 33(2): 117⁃122. |
| LI H, JIN Y Y, LI Y Y. Carbon emissions from sewage sludge treatment and low⁃carbon strategies[J]. Journal of Civil, Architectural & Environmental Engineering, 2011, 33(2): 117⁃122. | |
| [8] | 王 琳,李德彬,刘子为,等 .污泥处理处置路径碳排放分析[J/OL].中国环境科学. . |
| WANG L, LI D B, LIU Z W, et al. Carbon emission analysis of sludge treatment and disposal pathways[J/OL]. China Environmental Science. | |
| [9] | 刘秀如.城市污水污泥热解实验研究[D]. 北京:中国科学院研究生院(工程热物理研究所), 2011. |
| [10] | IPCC . Intergovernmental panel on climate change working group III,fourth assessment report (2007). climate change 2007: mitigation of climate change[EB/OL]. http:/ /www. ipcc. ch/SPM 040507. pdf. 2010⁃07⁃23. |
| [11] | 郝晓地, 陈 奇, 李 季,等.污泥干化焚烧乃污泥处理/处置终极方式[J].中国给水排水, 2019 (35): 35⁃42. |
| HAO X D, CHEN Q, LI J, et al. Sludge drying and incineration as the ultimate treatment/disposal method[J]. China Water & Wastewater, 2019, 35(1): 35⁃42. | |
| [12] | 陈菊香,张 疆 .厌氧消化/热电联产用于污水厂污泥处理改造[J]. 中国给水排水, 2012, 28(22): 102⁃104. |
| CHEN J X, ZHANG J. Application of anaerobic digestion/combined heat and power in sludge treatment renovation of wastewater treatment plant[J]. China Water & Wastewater, 2012, 28(22): 102⁃104. | |
| [13] | Mills N, Pearce P, Farrow J, et al.Environmental & economic life cycle assessment of current & future sewage sludge to energy technologies [J].Waste Management,2014(34): 185⁃195. |
| [14] | 中华人民共和国环境保护部.城镇污水处理厂污泥处理处置污染防治最佳可行技术指南(试行)[Z].2010. |
| [15] | 中华人民共和国发展和改革委员会. 中国化工生产企业温室气体排放核算方法与报告指南[Z]. |
| [16] | 生态环境部. 企业温室气体排放核算方法与报告指南 发电设施[Z]. 2021. |
| [17] | 周立祥, 胡霭堂, 胡忠明.厌氧消化污泥化学组成及其环境化学性质[J].植物营养与肥料学报, 1997(2): 176⁃181. |
| ZHOU L X, HU A T, HU Z M. Chemical composition and environmental chemical properties of anaerobically digested sludge[J]. Journal of Plant Nutrition and Fertilizers, 1997(2): 176⁃181. | |
| [18] | 陈 舜, 逯 非, 王效科.中国氮磷钾肥制造温室气体排放系数的估算[J].生态学报, 2015(35): 6 371⁃6 383. |
| CHEN S, LU F, WANG X K. Estimation of greenhouse gas emission factors for nitrogen, phosphorus and potassium fertilizer production in China[J]. Acta Ecologica Sinica, 2015, 35(16): 6 371⁃6 383. | |
| [19] | 刘立涛, 张 艳, 沈 镭, 等.水泥生产的碳排放因子研究进展[J].资源科学,2014(36): 110⁃119. |
| LIU L T, ZHANG Y, SHEN L, et al. Research progress on carbon emission factors for cement production[J]. Resources Science, 2014, 36(1): 110⁃119. | |
| [20] | 中华人民共和国国家质量技术监督检验检疫总局.锅炉节能技术监督管理规程[Z].2010. |
| [21] | Venkatesh G, Brattebø H.Energy consumption, costs and environmental impacts for urban water cycle services: Case study of Oslo (Norway)[J].Energy,2011(36): 792⁃800. |
| [22] | 刘洪涛, 郑海霞, 陈 俊,等.城镇污水处理厂污泥处理处置工艺生命周期评价 [J].中国给水排水,2013(29): 11⁃13. |
| LIU H T, ZHENG H X, CHEN J, et al. Life cycle assessment of sludge treatment and disposal processes in municipal wastewater treatment plants[J]. China Water & Wastewater, 2013, 29(23): 11⁃13. | |
| [23] | 中华人民共和国住房和城乡建设部, 中华人民共和国发展和改革委员会.城镇污水处理厂污泥处理处置技术指南[Z].2011. |
| [24] | 次瀚林, 王先恺, 董 滨.不同污泥干化焚烧技术路线全链条碳足迹分析 [J].净水技术,2021(40): 77⁃82+99. |
| CI H L, WANG X K, DONG B. Whole⁃chain carbon footprint analysis of different sludge drying and incineration technology routes[J]. Water Purification Technology, 2021, 40(10): 77⁃82+99. | |
| [25] | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.烧碱单位产品碳排放限额(征求意见稿)[Z].2019. |
| [26] | 闫志成, 许国仁, 李建政.污泥热解工艺的连续式生产性研究[J].中国给水排水, 2017(33): 16⁃20. |
| YAN Z C, XU G R, LI J Z. Continuous pilot⁃scale study on sludge pyrolysis process[J]. China Water & Wastewater, 2017, 33(5): 16⁃20. |
| [1] | 李支薇, 钱秀敏, 张兰兰, 林华珍, 丁恩恩, 秦宇媚, 赖朝坤. 气相色谱质谱法测定再生塑料中5种新型阻燃剂[J]. 中国塑料, 2025, 39(9): 101-107. |
| [2] | 颜婉华, 翟明, 阮诗伦, 申长雨. 玻璃态聚合物银纹化机理分析[J]. 中国塑料, 2025, 39(9): 12-17. |
| [3] | 张梦玲, 罗雅丹, 刘鸣畅, 王钼婕, 彭政, 吴亚君. 塑料行业六溴环十二烷履约淘汰过程中行业监管要点综述[J]. 中国塑料, 2025, 39(9): 121-128. |
| [4] | 杨帆, 张维合. 新能源汽车后视镜内支架大型精密注塑模设计[J]. 中国塑料, 2025, 39(9): 129-133. |
| [5] | 刘微, 裴文宇, 付中禹. 聚丙烯腈粉料热处理对其膜结构及性能的影响[J]. 中国塑料, 2025, 39(9): 18-25. |
| [6] | 陈曦, 董金明, 王亚涛, 柏入義, 史涛, 刘欢, 马小丰, 汪晓东. 聚甲醛纤维复合气凝胶的制备及其辐射冷却性能研究[J]. 中国塑料, 2025, 39(9): 26-37. |
| [7] | 谢微, 邓忠惠, 颜瑜. 生熟紫薯双层膜的制备及其在猪肉糜新鲜度监测中的应用[J]. 中国塑料, 2025, 39(9): 49-57. |
| [8] | 林聪龙. 自润滑TPV汽车密封材料制备及应用研究[J]. 中国塑料, 2025, 39(9): 58-62. |
| [9] | 韩雨生, 杨建军, 郑莹, 王雅骁. 3D打印柔性可拉伸离散功能梯度衬底的界面结构设计[J]. 中国塑料, 2025, 39(9): 68-74. |
| [10] | 吕炳金, 颜峰, 李俊杰, 保令谌, 黄凯勇. 沥青抗剥落剂对铁尾矿⁃沥青黏附性机理研究[J]. 中国塑料, 2025, 39(9): 86-92. |
| [11] | 尚云龙, 王东浩, 任志彬. 湿法橡胶沥青存储稳定性研究综述[J]. 中国塑料, 2025, 39(8): 75-82. |
| [12] | 胡立周, 孙颖晖, 贾莹洁, 王清洲. 玻璃钢夹砂管层间界面损伤及力学特性研究[J]. 中国塑料, 2025, 39(8): 69-74. |
| [13] | 张学敏, 张雪茹, 李厚补, 陈衍华, 孙琦尧. 基于有限元模拟的非金属智能连续管承压力学行为研究[J]. 中国塑料, 2025, 39(8): 62-68. |
| [14] | 李燕, 阿不来提·阿不力米提, 姜伊桐, 李鸿环, 买买提江·依米提. 木质素在聚合物中的应用[J]. 中国塑料, 2025, 39(8): 47-54. |
| [15] | 朱大韶, 罗宝树, 徐敬一, 杨雅凤, 王武聪, 汪胜旺, 陈剑波, 葛福炯. 聚苯乙烯化学发泡注射成型研究[J]. 中国塑料, 2025, 39(8): 41-46. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备11010802034965号
京ICP备13020181号-2