
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2025, Vol. 39 ›› Issue (9): 12-17.DOI: 10.19491/j.issn.1001-9278.2025.09.003
收稿日期:
2025-02-11
出版日期:
2025-09-26
发布日期:
2025-09-22
通讯作者:
翟明(1974—),男,博士,教授,mzhai@zzu.edu.cn作者简介:
颜婉华(2001—),女,硕士研究生,a25341797332001@163.com
基金资助:
YAN Wanhua1(), ZHAI Ming1(
), RUAN Shilun2, SHEN Changyu1
Received:
2025-02-11
Online:
2025-09-26
Published:
2025-09-22
Contact:
ZHAI Ming
E-mail:a25341797332001@163.com;mzhai@zzu.edu.cn
摘要:
基于粗粒珠簧模型,采用分子动力学软件LAMMPS模拟玻璃态聚乙烯银纹化过程。采用不同应变速率对模型进行拉伸,分析拉伸过程中材料的微观结构和应力应变,通过原始路径计算材料银纹化过程中分子链的缠结数目,结合能量图分析银纹生长过程中的缠结网络,发现应变速率对材料银纹化过程有较大影响;银纹生长过程是链解纠缠的过程;随着温度的升高,银纹会发生自愈合。
中图分类号:
颜婉华, 翟明, 阮诗伦, 申长雨. 玻璃态聚合物银纹化机理分析[J]. 中国塑料, 2025, 39(9): 12-17.
YAN Wanhua, ZHAI Ming, RUAN Shilun, SHEN Changyu. Analysis of crazing mechanism of glassy polymers[J]. China Plastics, 2025, 39(9): 12-17.
[1] | Deblieck R A C, Van Beek D J M, Remerie K, et al. Failure mechanisms in polyolefines: The role of crazing, shear yielding and the entanglement network[J]. Polymer, 2011, 52(14): 2 979⁃2 990. |
[2] | Yan Y, Sun Y, Su J, et al. Crazing Initiation and Growth in Polymethyl Methacrylate under Effects of Alcohol and Stress[J]. Polymers, 2023, 15(6): 1 375. |
[3] | Jiang H, Zhang J, Yang Z, et al. Modeling of competition between shear yielding and crazing in amorphous polymers' scratch[J]. International Journal of Solids and Structures, 2017, 124: 215⁃228. |
[4] | Laschuetza T, Ge T, Seelig T, et al. Molecular simulations of crazes in glassy polymers under cyclic loading[J]. Macromolecules,2024,57(23): 10 894⁃10 902. |
[5] | Sánchez⁃Valencia A, Smerdova O, Hutchings L R, et al. The Roles of Blending and of Molecular Weight Distribution on Craze Initiation[J]. Macromolecules, 2017, 50(23): 9 507⁃9 514. |
[6] | Laschuetza T, Seelig T. Analysis of mode I crack propagation in glassy polymers under cyclic loading using a molecular dynamics informed continuum model for crazing[J]. Journal of the Mechanics and Physics of Solids, 2025, 194: 105901 |
[7] | Li Y, Sun X, Zhang S, et al. A fractal crazing constitutive model of glassy polymers considering damage and toughening[J]. Engineering Fracture Mechanics, 2022, 267: 108354 |
[8] | Meng D, Kumar S K, Ge T, et al. Crazing of nanocomposites with polymer⁃tethered nanoparticles[J]. Journal of Chemical Physics, 2016, 145(9): 094902. |
[9] | Barriere T, Cherouat A, Gabrion X, et al. Short⁃ to long⁃term deformation behavior, failure, and service life of amorphous polymers under cyclic torsional and multiaxial loadings[J]. International Journal of Plasticity, 2021, 147: 103106. |
[10] | 夏学莲, 史向阳, 赵海鹏, 等. 热塑性高分子材料增韧机理研究进展[J]. 化工新型材料, 2019, 47(4), 34⁃37+42. |
XIA X L, SHI X Y, ZHAO H P, et al. Research progress on toughening mechanism of thermoplastic polymer materials[J]. New Chemical Materials, 2019, 47(4): 34⁃37+42. | |
[11] | 孙鹰, 张平. PMMA材料断裂应力与银纹损伤研究[J]. 材料科学与工程学报, 2005, 23(1): 92⁃95. |
SUN Y, ZHANG P. Study on fracture stress and silver grain damage of PMMA Materials[J]. Chinese Journal of Materials Science and Engineering, 2005, 23(1): 92⁃95. | |
[12] | 蔡鸿彬, 刘天远, 杨卓然, 等. 粘接层对聚甲基丙烯酸甲酯涂层刮擦破坏的影响及机理分析[J]. 固体力学学报, 2024, 45(1): 88⁃110. |
CAI H B, LIU T Y, YANG Z R, et al. Effect of adhesive layer on scratch damage of polymethyl methacrylate coating and mechanism analysis[J]. Chinese Journal of Solid Mechanics, 2024, 45(1): 88⁃110. | |
[13] | 钱杨帆, 陈特, 陈一铭, 等. 聚乙烯Ⅰ⁃Ⅱ复合型疲劳裂纹扩展实验研究[J]. 力学季刊,2021,42(1):87⁃97. |
Qian Y F, Chen T, Chen Y M, et al. Experimental study on fatigue crack propagation of polyethylene I.⁃II. composite type[J]. Mechanics Quarterly, 2021, 42(1): 87⁃97. | |
[14] | Koochaki A, Shahgholi M, Sajadi S M, et al. Investigation of the mechanical stability of polyethylene glycol hydrogel reinforced with cellulose nanofibrils for wound healing: Molecular dynamics simulation[J]. Engineering Analysis with Boundary Elements, 2023, 151: 1⁃7. |
[15] | Rottler J, Robbins M O. Jamming under tension in polymer crazes[J]. Physical Review Letters,2002, 89(19): 195501. |
[16] | Rottler J, Robbins M O. Growth, microstructure, and failure of crazes in glassy polymers[J]. Physical Review E, 2003, 68(1): 011801. |
[17] | Ichinomiya T, Obayashi I, Hiraoka Y. Persistent homology analysis of craze formation[J]. Physical Review E, 2017, 95(1): 012504. |
[18] | Nan K, Abritta P, Hoy R S. How Does the Character of Glassy⁃Polymeric Cavitation Depend on Entanglement Density and the Local Poisson Ratio? [J].Macromolecules, 2021, 54(16): 7347⁃7353. |
[19] | Wang J, Ge T. Crazing Reveals an Entanglement Network in Glassy Ring Polymers[J]. Macromolecules, 2021, 54(16): 7500⁃7511. |
[20] | Venkatesan S, Vivek⁃Ananth R P, Sreejith R P, et al. Network approach towards understanding the crazing in glassy amorphous polymers[J]. Journal of Statistical Mechanics: Theory and Experiment, 2018, 2018(4): 043305. |
[21] | Venkatesan S, Basu S. Investigations into crazing in glassy amorphous polymers through molecular dynamics simulations[J]. Journal of the Mechanics and Physics of Solids, 2015, 77: 123⁃145. |
[22] | Mahajan D K, Singh B, Basu S. Void nucleation and disentanglement in glassy amorphous polymers. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 2010, 82(1): 011803. |
[23] | Hossain D, Tschopp M A, Ward D K, et al. Molecular dynamics simulations of deformation mechanisms of amorphous polyethylene[J]. Polymer, 2010, 51(25): 6 071⁃6 083. |
[24] | Rubinstein M. Polymer physics[M]. Colby R H, New York: Oxford university press, 2003: 432. |
[25] | Drayer W F, Simmons D S.Is the Molecular Weight Dependence of the Glass Transition Temperature Caused by a Chain End Effect?[J]. arXiv preprint arXiv, 2023, 2303: 15399. |
[26] | Han J, Gee R H, Boyd R H. Glass⁃transition temperatures of polymers from molecular⁃dynamics simulations[J]. Macromolecules, 1994, 27(26): 7 781⁃7 784. |
[27] | Wypych G. Handbook of polymers[M]. Elsevier, Toronto: ChemTec Publishing, 2022: 684. |
[28] | Duran T, Costa A, Gupta A, et al. Coarse⁃Grained Molecular Dynamics Simulations of Paclitaxel⁃Loaded Polymeric Micelles[J]. Molecular Pharmaceutics, 2022, 19(4): 1 117⁃1 134 . |
[29] | Sukumaran S K, Grest G S, Kremer K, et al. Identifying the primitive path mesh in entangled polymer liquids[J]. Journal of Polymer Science Part B: Polymer Physics, 2005, 43(8): 917⁃933. |
[30] | Kröger M. Shortest multiple disconnected path for the analysis of entanglements in two⁃ and three⁃dimensional polymeric systems[J]. Computer physics communications, 2005, 168(3): 209⁃232. |
[31] | Edwards S F. The theory of polymer dynamics[M]. Doi M, New York: oxford university press, 1988: 391. |
[32] | Kamei E . and Brown N. Crazing in polyethylene[J]. Journal of Polymer Science: Polymer Physics Edition, 1984, 22(4): 543⁃559. |
[1] | 金清平, 曾东垚, 刘运蝶. 氯盐冻融作用下损伤GFRP管混凝土柱轴压性能试验研究[J]. 中国塑料, 2025, 39(8): 55-61. |
[2] | 冯智, 王进, 仝哲. 纤维织物/聚合物复合材料摩擦特性研究进展[J]. 中国塑料, 2025, 39(7): 141-147. |
[3] | 董升烨, 陈兴刚, 王启豪, 姚圉, 李若轩, 常家宾, 宋佳诚. 自修复高分子材料在医学领域的研究进展[J]. 中国塑料, 2025, 39(7): 148-156. |
[4] | 高永红, 何家乐, 金清平. 高温对GFRP管混凝土柱轴压性能影响研究[J]. 中国塑料, 2025, 39(7): 56-62. |
[5] | 刘文龙, 周翔, 楼爽, 马秀清, 李好义, 李长金, 杨卫民. 熔喷纤维细化机理及影响因素研究进展[J]. 中国塑料, 2025, 39(5): 118-122. |
[6] | 李长金, 刘文龙, 杨卫民, 郭子芳, 李好义. 静电喷纺低密度聚乙烯超细纤维及其性能[J]. 中国塑料, 2025, 39(5): 25-29. |
[7] | 栗小茜, 陈浩, 葛正浩, 宋浩杰, 高彦军. 车用碳纤维复合材料结构优化与性能研究进展[J]. 中国塑料, 2025, 39(4): 118-125. |
[8] | 王禹, 张亚军, 郑永彪, 高聪. 聚合物气辅挤出技术研究进展及应用[J]. 中国塑料, 2025, 39(3): 114-117. |
[9] | 马封安, 赵广慧, 田程, 贾宇喆, 刘涛. 缺陷对连续纤维增强复合材料力学性能影响的研究进展[J]. 中国塑料, 2025, 39(1): 104-111. |
[10] | 何文峰, 赵彤杰, 谢于辉, 梅毅, 谢德龙. 耐高温含氢乙烯基有机硅树脂的合成及改性[J]. 中国塑料, 2025, 39(1): 31-36. |
[11] | 邹晓月, 徐佳慧, 陈振树, 杨友强, 陆湛泉, 贾雨欣, 李成, 叶南飚, 曹堃. 口罩过滤材料及其驻极技术的研究进展[J]. 中国塑料, 2024, 38(9): 47-53. |
[12] | 张学敏, 翟丽珍, 李厚补, 齐国权, 黄尚彬, 张冬娜, 杨志锋, 张晓宇. IV型储氢气瓶内衬材料聚酰胺6氢渗透行为的分子模拟研究[J]. 中国塑料, 2024, 38(8): 62-68. |
[13] | 徐琛, 骆博飞, 刘腾腾, 邢晶凯. 成核剂改性聚丙烯研究进展[J]. 中国塑料, 2024, 38(7): 79-85. |
[14] | 王珅, 刘宣伯, 张艳芳, 贾雪飞, 祝桂香, 张龙贵. 生物可降解无纺布材料研究进展[J]. 中国塑料, 2024, 38(7): 86-92. |
[15] | 牛荷, 吕明福, 张宗胤, 徐耀辉, 许巍, 张师军, 郭鹏. 聚乙醇酸加工技术中助剂的应用进展[J]. 中国塑料, 2024, 38(6): 105-110. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||