
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2025, Vol. 39 ›› Issue (7): 141-147.DOI: 10.19491/j.issn.1001-9278.2025.07.021
收稿日期:
2024-09-27
出版日期:
2025-07-26
发布日期:
2025-07-22
通讯作者:
仝哲(1986-),讲师,研究方向为摩擦学设计,zhetong@nuc.edu.cn
FENG Zhi1, WANG Jin2, TONG Zhe3,4()
Received:
2024-09-27
Online:
2025-07-26
Published:
2025-07-22
Contact:
TONG Zhe
E-mail:zhetong@nuc.edu.cn
摘要:
纤维织物/聚合物复合材料比强度高,结构/性能可设计性强,通过纤维组份与结构设计可实现低润滑与高耐磨特性,在航空、航天以及汽车行业上有巨大的应用前景。本文介绍了纤维织物/聚合物复合材料在摩擦学上的应用与进展。阐述了纤维织物/聚合物复合材料在不同润滑方式下的润滑与抗磨机理,对比分析了不同纤维种类的摩擦特性,并对纤维种类对复合材料润滑、减磨的影响方式与机理进行了讨论。阐述了纤维的结构形式对复合材料摩擦学行为的影响机理与规律。最后从复合材料的接触尺度与摩擦稳定性、界面优化与改性以及导热优化三方面提出了纤维织物/聚合物复合材料摩擦应用要解决的关键技术和问题,为聚合物基复合材料的摩擦应用提供理论参考。
中图分类号:
冯智, 王进, 仝哲. 纤维织物/聚合物复合材料摩擦特性研究进展[J]. 中国塑料, 2025, 39(7): 141-147.
FENG Zhi, WANG Jin, TONG Zhe. Research progress in tribological properties of fiber fabrics⁃reinforced polymer matrix composites[J]. China Plastics, 2025, 39(7): 141-147.
[1] | Sun Y, Zhang Q, Gao L, et al. Experimental study on tribological properties of carbon/polytetrafluoroethylene hybrid fabric reinforced composite under heavy loads and oil lubrication[J]. Tribology International, 2016,94:82⁃86. |
[2] | Agrawal S, Singh K K, Sarkar P K. A comparative study of wear and friction characteristics of glass fibre reinforced epoxy resin, sliding under dry, oil⁃lubricated and inert gas environments[J]. Tribology International, 2016,96:217⁃224. |
[3] | Singh K K, Kumar S. Tribological performance of graphene nanoplatelets filled glass/epoxy composites under dry, inert gas and oil⁃lubricated environmental conditions[J]. Materials Letters, 2021,282:128881. |
[4] | Rhee K Y, Park S J, Hui D, et al. Effect of oxygen plasma⁃treated carbon fibers on the tribological behavior of oil⁃absorbed carbon/epoxy woven composites[J]. Composites Part B: Engineering, 2012,43(5):2 395⁃2 399. |
[5] | Farfan⁃Cabrera L I, Pérez⁃González J, Iniestra⁃Galindo M G, et al. Production and tribological evaluation of polypropylene nanocomposites with reduced graphene oxide (rGO) for using in water⁃lubricated bearings[J]. Wear, 2021,477:203860. |
[6] | Chen J, Liang X, Guo Z, et al. Insight into the wear properties of fiber fabric surface⁃enhanced composite under water lubrication[J]. Tribology International, 2023,187:108714. |
[7] | Hu Y, Tan D Q, Xu C, et al. Influence of high temperature on the tribological properties of hybrid PTFE/Kevlar fabric composite[J]. Tribology International, 2022,174:107781. |
[8] | Lu G, Liu H, Qi X, et al. Multiscale insight to tribological mechanism of PTFE/aramid fiber composite liner containing PES/PMPS microcapsules under a high temperature environment[J]. Tribology International, 2024,192:109315. |
[9] | Li J, Cheng X H. Effect of surface treatment on the tribological performance of carbon fiber reinforced thermoplastic polyimide composites[J]. Polymer Composites, 2009,30(1):59⁃65. |
[10] | Zhang G, Rasheva Z, Schlarb A K. Friction and wear variations of short carbon fiber (SCF)/PTFE/graphite (10vol.%) filled PEEK: Effects of fiber orientation and nominal contact pressure[J]. Wear, 2010,268(7⁃8):893⁃899. |
[11] | Kim S S, Park D C, Lee D G. Characteristics of carbon fiber phenolic composite for journal bearing materials[J]. Composite Structures, 2004,66(1⁃4):359⁃366. |
[12] | Wenbin L, Jianfeng H, Jie F, et al. A novel preparation approach for improving the mechanical and wet tribological properties of carbon fabric/phenolic composites[J]. Materials & Design, 2016,103:356⁃364. |
[13] | Bagci M, Demirci M, Sukur E F, et al. The effect of nanoclay particles on the incubation period in solid particle erosion of glass fibre/epoxy nanocomposites[J]. Wear, 2020,444⁃445:203159. |
[14] | Doumeng M, Ferry F, Delbé K, et al. Evolution of crystallinity of PEEK and glass⁃fibre reinforced PEEK under tribological conditions using Raman spectroscopy[J]. Wear, 2019,426⁃427:1 040⁃1 046. |
[15] | Xie J, Yao L, Xu F, et al. Fabrication and characterization of three⁃dimensional PMR polyimide composites reinforced with woven basalt fabric[J]. Composites Part B: Engineering, 2014,66:268⁃275. |
[16] | 王宏亮,玄武岩纤维增强聚苯硫醚复合材料摩擦磨损性能的研究[J]. 中国塑料,2013,8.27:42⁃44. |
WANG H L, Study on tribological behavior of basalt fiber reinforced polyphenylene sulfide composites. China Plastics, 2013,8(27):42⁃44. | |
[17] | Chairman C A, Kumaresh Babu S P. Mechanical and abrasive wear behavior of glass and basalt fabric⁃reinforced epoxy composites[J]. Journal of Applied Polymer Science, 2013,130(1):120⁃130. |
[18] | Gong J, Liu Z, Yu J, et al. Graphene woven fabric⁃reinforced polyimide films with enhanced and anisotropic thermal conductivity[J]. Composites Part A: Applied Science and Manufacturing, 2016,87:290⁃296. |
[19] | Hazarika A, Deka B K, Kim D, et al. Growth of aligned ZnO nanorods on woven Kevlar® fiber and its performance in woven Kevlar® fiber/polyester composites[J]. Composites Part A: Applied Science and Manufacturing, 2015,78:284⁃293. |
[20] | Woo S, Kim T. High⁃strain⁃rate impact in Kevlar⁃woven composites and fracture analysis using acoustic emission[J]. Composites Part B: Engineering, 2014,60:125⁃136. |
[21] | Qiu M, Yang Z, Lu J, et al. Influence of step load on tribological properties of self⁃lubricating radial spherical plain bearings with PTFE fabric liner[J]. Tribology International, 2017,113:344⁃353. |
[22] | Yang M, Yuan J, Men X, et al. Effect of ZrB2 particles incorporation on high⁃temperature tribological properties of hybrid PTFE/Nomex fabric/phenolic composite[J]. Tribology International, 2016,99:289⁃295. |
[23] | Li D, Guo Z. Metal⁃organic framework superhydrophobic coating on Kevlar fabric with efficient drag reduction and wear resistance[J]. Applied Surface Science, 2018,443:548⁃557. |
[24] | Chen B, Zhang M, Li X, et al. Tribological properties of epoxy⁃based self⁃lubricating composite coating enhanced by 2D/2D h⁃BN/MoS2 hybrid[J]. Progress in Organic Coatings, 2020,147:105767. |
[25] | Liu Y, Liu X, Zhang X, et al. Tribological properties and self⁃lubrication mechanism of in⁃situ grown graphene reinforced nickel matrix composites in ambient air[J]. Wear, 2022,496⁃497. |
[26] | Zhang W, Li J, Cheng S, et al. Synthetic of phenolic resin@SiO2 containing PAO6 to reinforce the tribological properties of PTFE/aramid fabric liner composites[J]. Journal of Materials Research and Technology, 2024,31:157⁃164. |
[27] | 李伟博,刘 建,赵宁波,等.温度对PTFE/Kevlar织物复合材料摩擦磨损性能的影响[J].摩擦学学报,2024:1⁃14. |
LI W B, LIU J, ZHAO N B, et al .The effect of temperature on the friction and wear properties of PTFE/Kevlar fabric composites[J]. Tribology, 2024:1⁃14. | |
[28] | Zhang H, Zhang Z, Guo F, et al. The influence of plasma treatment on the tribological properties of hybrid PTFE/cotton fabric/phenolic composites[J]. Polymer Composites, 2009,30(10):1 523⁃1 531. |
[29] | He Y, Zhang Z, Wang Y, et al. Synergistic effects of bioprotein decoration and WS2 @Ti3C2 nanohybrids on the interfacial and tribological performance of PPS/PTFE fabric composites[J]. Tribology International, 2023,186:108587. |
[30] | Sharma M, Rao I M, Bijwe J. Influence of fiber orientation on abrasive wear of unidirectionally reinforced carbon fiber⁃polyetherimide composites[J]. Tribology International, 2010,43(5⁃6SI):959⁃964. |
[31] | Moghimi Monfared R, Ayatollahi M R, Barbaz Isfahani R. Synergistic effects of hybrid MWCNT/nanosilica on the tensile and tribological properties of woven carbon fabric epoxy composites[J]. Theoretical and Applied Fracture Mechanics, 2018,96:272⁃284. |
[32] | Sorrentino L, Silva De Vasconcellos D, D'Auria M, et al. Flexural and low velocity impact characterization of thermoplastic composites based on PEN and high performance woven fabrics[J]. Polymer Composites, 2018,39(8):2 942⁃2 951. |
[33] | Fu Y, Zhou L, Yin T, et al. A new kind of resin⁃based wet friction material: non⁃woven fabrics with isotropic fiber networks as preforms[J]. Friction, 2021,9(1):92⁃103. |
[34] | Tong Z, Lu H, Guo F, et al. Preparation of small CNTs@Fe3O4 and alignment in carbon fabrics/epoxy composites to improve mechanical and tribological properties[J]. Journal of Materials Science, 2021,56(2):1 386⁃1 400. |
[35] | Tong Z, Li X, Ma Q, et al. Synergism of hollow MoS2 nano⁃particles and WS2 micro⁃particles on improving the tribological properties of carbon fiber fabric reinforced phenolic⁃based composites[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2019,233(7):1 107⁃1 116. |
[36] | Lin Z, Jia X, Li Y, et al. Improved mechanical/tribological pro⁃perties of polyimide/carbon fabric composites by in situ⁃grown polyaniline nanofibers[J]. Materials Chemistry and Physics, 2021,258:123972. |
[37] | Rong Y, Zhao P, Shen T, et al. Mechanical and tribological pro⁃perties of basalt fiber fabric reinforced polyamide 6 composite laminates with interfacial enhancement by electrostatic self⁃assembly of graphene oxide[J]. Journal of Materials Research and Technology, 2023,27:7 795⁃7 806. |
[38] | Wang B, Fu Q, Li H, et al. Mechanisms of simultaneously enhanced mechanical and tribological properties of carbon fabrics/phenolic resin composites reinforced with graphite nanoplatelets[J]. Journal of Alloys and Compounds, 2021,854:157176. |
[39] | Fei J, Zhang C, Luo D, et al. Bonding TiO2 array on carbon fabric for outstanding mechanical and wear resistance of carbon fabric/phenolic composite[J]. Surface and Coatings Technology, 2017,317:75⁃82. |
[40] | Xu H, Zhang L, Wang Y, et al. The effects of Z⁃stitching density on thermophysical properties of plain woven carbon fiber reinforced silicon carbide composites[J]. Ceramics International, 2015,41(1):283⁃290. |
[41] | Zhang Y, Yan L, Miao M, et al. Microstructure and mechanical properties of z⁃pinned carbon fiber reinforced aluminum alloy composites[J]. Materials & Design, 2015,86:872⁃877. |
[42] | Wenbin L, Jianfeng H, Jie F, et al. Effect of aramid pulp on improving mechanical and wet tribological properties of carbon fabric/phenolic composites[J]. Tribology International, 2016,104:237⁃246. |
[43] | Qiu X, He F, Li J, et al. Tribological behavior of three‐dimensional braided carbon fiber reinforced polyetheretherketone composites[J]. Polymer Composites, 2014,36(12):2 174⁃2 183. |
[44] | Arjmandi M, Ramezani M, Giordano M, et al. Finite element modelling of sliding wear in three⁃dimensional woven textiles[J]. Tribology International, 2017,115:452⁃460. |
[45] | Arjmandi M, Ramezani M, Bolle T, et al. Mechanical and tribological properties of a novel hydrogel composite reinforced by three⁃dimensional woven textiles as a functional synthetic cartilage[J]. Composites Part A: Applied Science and Manufacturing, 2018,115:123⁃133. |
[46] | Shangguan Q, Cheng X. Tribological properties of lanthanum treated carbon fibers reinforced PTFE composite under dry sliding condition[J]. Wear, 2007,262(11/12):1 419⁃1 425. |
[47] | Min B K, Nguyen V, Kim S J, et al. Surface plasmon resonance⁃enhanced near⁃infrared absorption in single⁃layer MoS2 with vertically aligned nanoflakes[J]. ACS Applied Materials & Interfaces, 2020,12(12):14 476⁃14 483. |
[48] | Lin Z, Gao B, Li X, et al. Effect of abrasive grain size on surface particle deposition behaviour of PTFE/bronze composites during abrasive wear[J]. Tribology International, 2019,139:12⁃21. |
[49] | Chen B, Jia Y, Zhang M, et al. Tribological properties of epoxy lubricating composite coatings reinforced with core⁃shell structure of CNF/MoS2 hybrid[J]. Composites Part A: Applied Science and Manufacturing, 2019,122:85⁃95. |
[50] | Li M, Gu Y, Liu Y, et al. Interfacial improvement of carbon fiber/epoxy composites using a simple process for depositing commercially functionalized carbon nanotubes on the fibers[J]. Carbon, 2013,52:109⁃121. |
[51] | Chen B, Tong Y, Yang B, et al. Interface construction of micro/nano hierarchical structure to enhance the tribological performance of carbon fabric/phenolic composite[J]. Wear, 2023,534⁃535:205132. |
[52] | Sun Z, Zhao Z, Zhang Y, et al. Mechanical, tribological and thermal properties of injection molded short carbon fiber/expanded graphite/polyetherimide composites[J]. Composites Science and Technology, 2021,201:108498. |
[53] | Cheng B, Duan H, Chen S, et al. Effects of thermal aging on the blend phase morphology and tribological performance of PI/UHMWPE blend composites[J]. Wear, 2021,477:203840. |
[54] | He G, Li Y, Wu L, et al. Synergy of core⁃shell Cu@rGO hybrids for significantly improved thermal and tribological properties of polyimide composites[J]. Tribology International, 2021,161:107091. |
[55] | Chegdani F, El Mansori M, Bukkapatnam S T S, et al. Thermal effect on the tribo⁃mechanical behavior of natural fiber composites at micro⁃scale[J]. Tribology International, 2020,149:105831. |
[56] | 严云峰, 孟兆洁, 王建章, 等. 不同接枝量的CF⁃MoS2纤维杂化体对PTFE复合材料高温摩擦学性能的影响[J]. 润滑与密封, 2021,46(12):36⁃42. |
YAN Y F, MENG Z J, WANG J Z,et al .The effect of different grafting extent of CF⁃MoS2 hybrids on the tribological performance of PTF⁃based composites at high temperatures[J]. Lubrication Engineering, 2021, 46(12) : 36⁃42. |
[1] | 陈自强, 张绍成, 张桂铭, 白丛启, 李国良. 多环境废旧橡胶改性沥青碎石封层基体结构黏结强度及路用性能研究[J]. 中国塑料, 2025, 39(8): 107-112. |
[2] | 盛宏航, 吴薇, 范文州, 李雪华, 程浩. 碳纤维⁃玻璃纤维混杂环氧树脂基复合材料低速冲击性能研究[J]. 中国塑料, 2025, 39(8): 12-18. |
[3] | 黄庚, Bekbolatovich Sagin Abay, 吴大鸣, 王晓杰, 高小龙, 孙靖尧, 黄尧, 许红, 郑秀婷. 辐照改性对聚四氟乙烯结构和耐磨性研究[J]. 中国塑料, 2025, 39(7): 12-16. |
[4] | 孙悦颖, 汤小龙, 邹忠毅, 王梦桥, 刘继涛. 聚偏氟乙烯剪切变形过程大分子结构演变分子动力学模拟研究[J]. 中国塑料, 2025, 39(7): 63-71. |
[5] | 程越, 左桂兰. 基于CAE优化的新能源汽车空调风口下支板热流道模具设计[J]. 中国塑料, 2025, 39(6): 110-117. |
[6] | 陈元民, 赵梦宇, 仇思源, 李亚娇, 王文昊, 王昊, 朱广迎, 孙靖尧. 面向胸腹式呼吸检测需求的柔性传感器制备[J]. 中国塑料, 2025, 39(6): 36-41. |
[7] | 吴希然, 贾志欣, 刘立君, 李继强, 赵川涛, 陈博杰. PP⁃CGFR/PP⁃LGFR热压⁃注塑一体成型制品力学性能分析[J]. 中国塑料, 2025, 39(5): 1-8. |
[8] | 安静静, 张浩宇, 刘宪虎, 邵春光. 用于节能降温的热塑性聚氨酯基膜材料研究进展[J]. 中国塑料, 2025, 39(5): 9-17. |
[9] | 张文超, 吴迪, 张晗, 妙磊, 崔恩铭, 王明伟, 叶星辉, 于峻伟. 汽车前A柱上饰板低压注塑包覆成型工艺分析与模具设计[J]. 中国塑料, 2025, 39(4): 104-110. |
[10] | 蒋新沛, 黄天宇, 魏兴岳, 张鹏, 王世龙, 王世檩, 杨卫民, 鉴冉冉. 聚合物低温挤出与能耗管理研究进展[J]. 中国塑料, 2025, 39(4): 111-117. |
[11] | 王超元, 陈欣, 林增, 祁纪浩, 庞志威, 沙金. 基于ANN代理模型的单螺杆计量段结构参数优化[J]. 中国塑料, 2025, 39(3): 95-101. |
[12] | 丁雯. 磷基⁃水性聚氨酯阻燃剂的制备及对棉织物的涂层[J]. 中国塑料, 2025, 39(2): 82-85. |
[13] | 李国林. 微波炉内盖新型叠层注塑模具设计[J]. 中国塑料, 2025, 39(2): 91-93. |
[14] | 马封安, 赵广慧, 田程, 贾宇喆, 刘涛. 缺陷对连续纤维增强复合材料力学性能影响的研究进展[J]. 中国塑料, 2025, 39(1): 104-111. |
[15] | 胡鲲鸣, 王迪, 金镖, 阮剑波, 刘万强, 谢鹏程. 微电子元件注塑封装模流仿真工艺优化研究[J]. 中国塑料, 2025, 39(1): 44-47. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||