中国塑料 ›› 2021, Vol. 35 ›› Issue (3): 59-66.DOI: 10.19491/j.issn.1001-9278.2021.03.009

• 材料与性能 • 上一篇    下一篇

金属基聚合物复合材料短纤维桥接界面强化机理

计操, 周国发()   

  1. 南昌大学资源环境与化工学院,南昌 330031
  • 收稿日期:2020-11-02 出版日期:2021-03-26 发布日期:2021-03-22
  • 基金资助:
    国家自然科学基金(21464009)

Interface Strengthening Mechanism of Short Fiber Bridging for Metal⁃Matrix Polymeric Composites

JI Cao, ZHOU Guofa()   

  1. School of Resources,Environmental and Chemical Engineering,Nanchang University,Nanchang 330031,China
  • Received:2020-11-02 Online:2021-03-26 Published:2021-03-22
  • Contact: ZHOU Guofa E-mail:ndzgf@163.com

摘要:

针对金属基聚合物复合材料易诱发界面剥离损伤失效的共性问题,研究了通过多层复合组装注射成型,在聚合物复合层与粘接层界面形成短纤维桥接,实现复合界面强化。基于内聚力剥离损伤模型,构建了短纤维桥接强化界面剥离裂纹扩展断裂失效过程的模拟仿真技术,模拟建立了界面剥离裂纹快速失稳扩展断裂损伤失效临界载荷—桥接纤维特性—界面剥离断裂韧性(损伤启裂应力T0和临界应变能释放率Gc)的协同关联理论,诠释了短纤维桥接界面强化机理,提出了预防短纤维桥接强化界面诱发剥离裂纹快速失稳扩展失效的设计准则。结果表明,当桥接纤维密度为20根/mm2,可使其临界载荷增加55.9 %,临界载荷受控于桥接纤维密度、初始预裂纹面积、损伤启裂应力和临界应变能释放率,且与桥接纤维密度、损伤启裂应力和临界应变能释放率呈正关联关系,而与初始预裂纹面积呈负关联关系。

关键词: 金属基, 聚合物, 复合材料, 纤维桥接, 界面强化, 剥离失效, 预防设计准则

Abstract:

Aiming at the common problem that the metal-matrix polymeric composites are easy to induce interface peeling damage and failure, this paper focused on the composite interface strengthening through a short fiber bridge formed at the interface between the polymeric composite layer and adhesive layer by means of the multi-layer composite assembly injection molding. On the basis of a cohesive peeling damage model, a simulation technology was constructed for the failure process of interfacial peeling crack propagation and the fracture failure of the composites with short fiber bridging. A synergetic relevance theory based on the failure critical load-bridging fiber properties-interface peeling fracture toughness (damage crack initiation stress T0 and critical strain energy release rate Gc) was constructed for the interfacial peeling unstable crack rapid propagation fracture damage failure. The interface strengthening mechanism of short fiber bridging was explored, with the design criterion proposed for preventing the peeling unstable crack rapid propagation fracture damage failure induced by the short fiber bridge strengthening interface. The results indicated that the critical load was increased by 55.9 % with a density of bridging fiber at 20/mm2. The critical load was controlled by the density of bridging fiber, initial pre-crack area, damage crack initiation stress and critical strain energy release rate. The critical load was positively correlated with the density of bridging fiber, damage crack initiation stress and critical strain energy release rate, but negatively correlated with the initial pre-crack area.

Key words: metal matrix, polymer, composite, fiber bridging, interface strengthening, delamination failure, preventive design criteria

中图分类号: