
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2021, Vol. 35 ›› Issue (10): 154-165.DOI: 10.19491/j.issn.1001-9278.2021.10.024
• 综述 • 上一篇
王惠添1,2(), 殷莎1,3, 陈正伟1,4, 赵海斌1,4, LOH Chaliang1,4
收稿日期:
2021-03-08
出版日期:
2021-10-26
发布日期:
2021-10-27
作者简介:
王惠添(1995—),男,从事汽车零部件轻量化研究,
WANG Huitian1,2(), YIN Sha1,3, CHEN Zhengwei1,4, ZHAO Haibin1,4, LOH Chaliang1,4
Received:
2021-03-08
Online:
2021-10-26
Published:
2021-10-27
摘要:
介绍了微孔发泡塑料的定义及优点,阐述并对比了物理微孔发泡和化学微孔发泡等2种微孔发泡注塑成型工艺;详细介绍了近年来微孔发泡注塑技术在工艺优化、开模二次发泡、表面质量改善和力学性能预估等方面的最新研究进展;最后,对微孔发泡注塑技术未来的研究方向进行了展望。
中图分类号:
王惠添, 殷莎, 陈正伟, 赵海斌, LOH Chaliang. 微孔发泡注塑技术研究进展[J]. 中国塑料, 2021, 35(10): 154-165.
WANG Huitian, YIN Sha, CHEN Zhengwei, ZHAO Haibin, LOH Chaliang. Research Progress in Microcellular Foam Injection Molding Technology[J]. China Plastics, 2021, 35(10): 154-165.
物质类型 | 密度/kg·m-3 | 黏度/Pa·s | 扩散系数/m2·s-1 |
---|---|---|---|
气体 | 1 | 10-5 | 10-5 |
超临界流体 | 200~700 | 10-4 | 10-7 |
液体 | 1 000 | 10-3 | 5×10-10 |
物质类型 | 密度/kg·m-3 | 黏度/Pa·s | 扩散系数/m2·s-1 |
---|---|---|---|
气体 | 1 | 10-5 | 10-5 |
超临界流体 | 200~700 | 10-4 | 10-7 |
液体 | 1 000 | 10-3 | 5×10-10 |
1 | 赵志刚, 刘立涛, 刘宏萱. 汽车轻量化之内饰篇[J]. 时代汽车, 2019(10): 57⁃58. |
ZHAO Z G, LIU L T, LIU H X. Automotive Lightweight Interiors[J]. Auto Time, 2019(10): 57⁃58. | |
2 | 梁 偲. 人人都在减肥,汽车也急着瘦身[J]. 世界科学, 2020(6): 26⁃28. |
LIANG S. Everyone Is Losing Weight, and the Car Is Also Eager to Lose weight[J]. World Science, 2020(6): 26⁃28. | |
3 | ZVORYKINA A, SHEREPENKO O, NEUBAUER M, et al. Dissimilar Metal Joining of Aluminum to Steel by Hybrid Process of Adhesive Bonding and Projection Welding Using a Novel Insert Element[J]. Journal of Materials Processing Technology, 2020, 282:166680. |
4 | 陈 磊, 程稳正, 孙 珏, 等. 铝合金铸造副车架开发[J]. 汽车技术, 2015(2): 58⁃62. |
CHEN L, CHENG W Z, SUN Y, et al. Development of Aluminum Alloy Casting Subframe[J]. Automotive Technology, 2015(2): 58⁃62. | |
5 | 郝守海, 胡 蓉, 徐茂林, 等. 混合动力客车全铝合金车身顶盖骨架优化设计[J]. 汽车技术, 2016(6): 11⁃15. |
HAO S H, HU R, XU M L, et al. Optimal Design of the All⁃aluminum Alloy Body Roof Frame of Hybrid Electric Bus[J]. Automotive Technology, 2016(6): 11⁃15. | |
6 | PINTO S C, SILVA N, PINTO R J B, et al. Multifunctional Hybrid Structures Made of Open⁃Cell Aluminum Foam Impregnated with Cellulose/Graphene Nanocomposites[J]. Carbohydr Polym, 2020, 238: 116197. |
7 | 贺良国, 赵 杰, 谷先广. 基于多胞结构的车身前端轻量化和耐撞性设计[J]. 汽车工程, 2020, 42(6): 832⁃839,846. |
HE L G, ZHAO J, GU X G. Lightweight and Crashworthy Design of Car Body Front End Based on Multi⁃Cell Structure[J]. Automotive Engineering, 2020, 42(6): 832⁃839,846. | |
8 | 崔 岸, 刘芳芳, 张 晗, 等. 车身泡沫填充铝合金波纹夹芯板结构性能分析与优化[J]. 汽车工程, 2019, 41(10): 1 221⁃1 227. |
CUI A, LIU F F, ZHANG H, et al. Analysis and Optimization of Structural Performance of Foam⁃Filled Aluminum Alloy Corrugated Sandwich Panel[J]. Automotive Engineering, 2019, 41(10): 1 221⁃1 227. | |
9 | 陈敬栋.大型汽车用塑件的注射成型工艺研究[D]. 合肥:合肥工业大学, 2009. |
10 | 韩 琛. 塑料在汽车工业中的应用[J]. 时代汽车, 2017,18: 81⁃82. |
HAN C. Application of Plastics in the Automotive Industry[J]. Auto Time, 2017,18: 81⁃82. | |
11 | FUENMAYOR N, SHAH M, GLOGOVSKY T. Breaking New Ground with Thermoplastic Polyolefin Body Panels[C]//Proceedings of the 11th⁃Annual SPE TPO Conference. Detroit:Society of Plastics Engineers, 2009. |
12 | KRISHNAMOORTHY N, NAYAK S, SURISETTY G K, et al. Polycarbonate Glazing Body Panels for Automotive Applications[C]//Proceedings of the SAE Symposium on International Automotive Technology. Pune: SAE International, 2009. |
13 | ADER S, MOULIN J P, MADIGNIER R. Plastic Tailgate: What Material for What Purpose[C]//Proceedings of the SAE 2000 World Congress. Detroit:SAE International, 2000. |
14 | 顾丽扬. 某轿车塑料背门结构优化设计研究[D]. 长春:吉林大学, 2013. |
15 | 陈有松, 沈国民, 段利斌. 可轧制约束下VRB薄壁结构的厚度分布优化方法研究[J]. 汽车工程, 2020, 42(12): 1 728⁃1 736. |
CHEN Y S, SHEN G M, DUAN L B. Research on Optimizing Method of Thickness Distribution of VRB Thin⁃Walled Structure under Rollable Constraints[J]. Automotive Engineering, 2020, 42(12): 1 728⁃1 736. | |
16 | 魏彤辉, 左文杰, 郑宏伟, 等. 基于降维算法的车身可靠性优化[J]. 汽车工程, 2020, 42(7): 941⁃948. |
WEI T H, ZUO W J, ZHENG H W, et al. Car Body Reliability Optimization Based on Dimensionality Reduction Algorithm[J]. Automotive Engineering, 2020, 42(7): 941⁃948. | |
17 | 朱剑峰, 许智勇, 蔡梦尧, 等. 多工况下汽车发动机支架静动态拓扑优化设计[J]. 汽车技术, 2016(8): 6⁃9. |
ZHU J F, XU Z Y, CAI M Y, et al. Static and Dynamic Topology Optimization Design of Automobile Engine Support Under Multiple Working Conditions[J]. Automotive Technology, 2016(8): 6⁃9. | |
18 | 陈 东, 刘 伟, 雷绍阔. 连续纤维增强热塑性复合材料在汽车上的应用[J]. 上海塑料, 2019(1): 46⁃51. |
CHEN D, LIU W, LEI S K. Application of Continuous Fiber Reinforced Thermoplastic Composite Material in Automobile[J]. Shanghai Plastic, 2019(1): 46⁃51. | |
19 | 方 程, 王昌斌, 石海鑫. 汽车用复合材料“混合”工艺技术进展[J]. 汽车文摘, 2019(6): 1⁃7. |
FANG C, WANG C B, SHI H X. Progress in “Hybrid” Process Technology for Automotive Composite Materials[J]. Automotive Digest, 2019(6): 1⁃7. | |
20 | 王隆宇, 王 帅. 基于复合材料的超轻量化电动汽车[J]. 汽车实用技术, 2019(11): 203⁃205. |
WANG L Y, WANG S. Ultra⁃Lightweight Electric Vehicles Based on Composite Materials[J]. Automobile Applied Technology, 2019(11): 203⁃205. | |
21 | 陈 静, 唐傲天, 田 凯, 等. 碳纤维复合材料防撞梁轻量化设计[J]. 汽车工程, 2020, 42(3): 390⁃395. |
CHEN J, TANG A T, TIAN K, et al. Lightweight Design of Carbon Fiber Composite Anti⁃Collision Beam[J]. Automotive Engineering, 2020, 42(3): 390⁃395. | |
22 | 卢家海, 汪 霞, 寇宏滨. 碳纤维复合材料避震塔强度性能多尺度优化设计[J]. 汽车技术, 2021(1): 51⁃56. |
LU J H, WANG X, KOU H B. Multi⁃scale Optimization Design of Strength Performance of Carbon Fiber Composite Shock Tower[J]. Automotive Technology, 2021(1): 51⁃56. | |
23 | 蔡珂芳. 混合材料白车身轻量化多目标协同优化设计[D]. 长春:吉林大学, 2018. |
24 | MARTINI⁃VVEDENSKY J E, SUH N P, WALDMAN F A. Microcellular closed cell foams and their method of manufacture: US,4473665A[P]. 1984⁃09⁃25. |
25 | 张 纯. 高品质化学发泡聚烯烃材料的制备及其断裂行为的研究[D]. 上海:上海大学, 2009. |
26 | 余 坚, 何嘉松. 超临界CO2技术制备微孔聚合物中的基本问题[J]. 中国科学:化学, 2010, 40(1): 1⁃15. |
YU J, HE J S. Fundamental Problems in the Preparation of Microporous Polymers by Supercritical CO2 Technology[J]. Scientia Sinica Chimica, 2010, 40(1): 1⁃15. | |
27 | 何亚东. 聚合物微发泡材料制备技术应用研究进展[J]. 塑料, 2004(5): 9⁃15. |
HE Y D. Research Progress in the Application of Polymer Micro⁃Foaming Materials Preparation Technology[J]. Plastic, 2004(5): 9⁃15. | |
28 | 李 涛. 玻纤增强微发泡注塑薄壁结构件的力学性能多尺度研究[D]. 上海:上海交通大学, 2015. |
29 | 翟文涛, 余 坚, 何嘉松. 超临界流体制备微发泡聚合物材料的研究进展[J]. 高分子通报, 2009(3): 1⁃10. |
ZHAI W T, YU J, HE J S. Research Progress of Supercritical Fluid Preparation of Micro⁃foamed Polymer Materials[J]. Polymer Bulletin, 2009(3): 1⁃10. | |
30 | 何亚东. 聚合物微发泡材料制备技术理论研究进展[J]. 塑料, 2004(3): 8⁃14,57. |
HE Y D. Theoretical Research Progress of Preparation Technology of Polymer Micro⁃foaming Materials[J]. Plastic, 2004(3): 8⁃14,57. | |
31 | 王如波, 王 勇, 夏 欣. 微发泡注塑成型技术的研究和应用[J]. 橡塑技术与装备, 2019, 45(10): 30⁃34. |
WANG R B, WANG Y, XIA X. Research and Application of Micro⁃foaming Injection Molding Technology [J]. China Rubber/Plastics Technology And Equipment, 2019, 45(10): 30⁃34. | |
32 | LLEWELYN G, REES A, GRIFFITHS C A, et al. Advances in Microcellular Injection Moulding[J]. Journal of Cellular Plastics, 2020,56(6):1⁃31. |
33 | XU J Y. Microcellular Injection Molding[M]. Hoboken: John Wiley & Sons, Inc., 2010:3. |
34 | 陈 明, 高山俊, 巴 丽, 等. PP/POE微发泡材料的制备和性能[J]. 工程塑料应用, 2019, 47(1): 49⁃54. |
CHEN M, GAO S J, BA L,et al. PP/POE Preparation and Performance of Micro⁃Foaming Materials[J]. Engineering Plastics Application, 2019, 47(1): 49⁃54. | |
35 | 何继敏. 聚丙烯挤出发泡过程的理论及实验研究[D]. 北京:北京化工大学, 2002. |
36 | 夏 青. 微孔发泡注塑工艺研究[D]. 北京:北京化工大学, 2012. |
37 | 曹志达. 超临界流体微发泡聚丙烯注射制品PVT特性测控研究[D].北京:北京化工大学, 2019. |
38 | BLEDZKI A K, KÜHN⁃GAJDZIK J. Microcellular of Glass Fibre Reinforced PC/ABS: Effect of the Processing Condition on the Morphology and Mechanical Properties[J]. Cellular Polymers, 2018, 29(1): 27⁃43. |
39 | 杨雁兵. 聚合物微发泡流体流变性能的研究[D]. 郑州:郑州大学, 2019. |
40 | 张 涵. 发泡剂母粒对微发泡PP材料泡孔结构与力学性能的影响[J]. 上海塑料, 2019(4): 27⁃31. |
ZHANG H. The Effect of Foaming Agent Masterbatch on the Cell Structure and Mechanical Properties of Micro⁃Foamed PP Materials[J]. Shanghai Plastic, 2019(4): 27⁃31. | |
41 | 王 滨, 蒋顶军. 化学发泡注塑工艺对PA6/GF微发泡材料结构与力学性能的影响[J]. 工程塑料应用, 2018, 46(9): 53⁃59. |
WANG B, JIANG D J. Influence of Chemical Foaming Injection Molding Process on the Structure and Mechanical Properties of PA6/GF Micro⁃foaming Material[J]. Engineering Plastics Application, 2018, 46(9): 53⁃59. | |
42 | 蔡 青. 发泡剂对微发泡PP材料表面外观与基本性能的影响[J]. 上海塑料, 2020(2): 47⁃51. |
CAI Q. The Effect of Foaming Agent on the Surface Appearance and Basic Properties of Micro⁃Foamed PP Materials[J]. Shanghai Plastic, 2020(2): 47⁃51. | |
43 | GARBACZ T, PALUTKIEWICZ P. Effectiveness of Blowing Agents in the Cellular Injection Molding Process[J]. Cellular Polymers, 2018, 34(4): 189⁃214. |
44 | 李振华, 彭 莉, 杨 波, 等. 微发泡聚丙烯材料发泡性能影响因素研究[J]. 广东化工, 2019, 46(15): 30⁃32,59. |
LI Z H, PENG L, YANG B, et al. Research on Influencing Factors of Foaming Properties of Micro⁃foamed Polypropylene[J]. Guangdong Chemical Industry, 2019, 46(15): 30⁃32,59. | |
45 | 李秀峻. 微发泡注塑聚丙烯复合材料的性能及微观结构[J]. 上海塑料, 2018(2): 9⁃13. |
LI X J. Performance and Microstructure of Micro⁃Foam Injection⁃Molded Polypropylene Composite[J]. Shanghai Plastic, 2018(2): 9⁃13. | |
46 | 李胜男, 蒋团辉, 张 翔, 等. 成核剂对PP发泡行为和力学性能影响[J]. 现代塑料加工应用, 2019, 31(5): 32⁃35. |
LI S N, JIANG T H, ZHANG H, et al. Influence of Nucleating Agent on Foaming Behavior and Mechanical Properties of PP[J]. Modern Plastics Processing And Applications, 2019, 31(5): 32⁃35. | |
47 | 李 蓓, 毛华杰, 郭 巍, 等. PP微孔发泡试样泡孔结构与拉伸性能的变化关系研究[J]. 工程塑料应用, 2015, 43(10): 52⁃58. |
LI P, MAO H J, GUO W, et al. Study on the Relationship Between the Cell Structure and Tensile Properties of PP Microcellular Foamed Samples[J]. Engineering Plastics Application, 2015, 43(10): 52⁃58. | |
48 | DONG G, ZHAO G, GUAN Y, et al. The Cell Forming Process of Microcellular Injection⁃Molded Parts[J]. Journal of Applied Polymer Science, 2014, 131(12):40365. |
49 | KRAUSE K, NEUMEYER T, BAUMGART C, et al. Influence of Low Heat Conductive Inserts on Morphology of Foam Injection Molded Parts[C]//AIP Conference Proceedings 2065. Taipei:American Instituteof Physics, 2019: 030047. |
50 | 蒋团辉, 曾祥补, 张 翔, 等. 微开模距离对微发泡聚丙烯性能的影响[J]. 工程塑料应用, 2019, 47(6): 60⁃65. |
JAING T H, ZENG X B, ZHANG X, et al. The Influence of Micro⁃Opening Distance on the Properties of Micro⁃Foamed Polypropylene[J]. Engineering Plastics Application, 2019, 47(6): 60⁃65. | |
51 | 董桂伟, 赵国群, 武 欢, 等. 基于高保压与开模发泡的微孔发泡注塑产品发泡行为控制与泡孔结构改善[J]. 机械工程学报, 2020,18: 1⁃8. |
DONG G W, ZHAO G Q, WU H, et al. Foaming Behavior Control and Cell Structure Improvement of Microcellular Foam Injection Products Based on High Holding Pressure and Open Mold Foaming[J]. Journal of Mechanical Engineering, 2020,18: 1⁃8. | |
52 | 吴 昊. 型芯后撤二次注射开合模发泡注塑成型技术研究[D]. 济南:山东大学, 2019. |
53 | WU H, ZHAO G, WANG G, et al. A New Core⁃Back Foam Injection Molding Method with Chemical Blowing Agents[J]. Materials & Design, 2018, 144: 331⁃342. |
54 | 成 薇, 徐以国, 裘洲通. 基于Core⁃Back的化学微发泡模具开发[J]. 模具制造, 2020, 20(8): 24⁃26. |
CHENG W, XU Y G, QIU Z T. Development of Chemical Microcellular foaming Mould Based on Core⁃Back[J]. Die & Mould Manufacture, 2020, 20(8): 24⁃26. | |
55 | 詹春毅, 岑运福. 注射成型中充模阶段熔体喷泉流动的研究[J]. 塑料制造, 2006(7): 76⁃78. |
ZHAN C Y, CEN Y F. Research on the Melt Fountain Flow in the Filling Stage of Injection Molding[J]. Plastics Manufacture, 2006(7): 76⁃78. | |
56 | 迟文凯, 谢鹏程. 微发泡制品表面质量改善理论及研究进展[J]. 塑料, 2020, 49(1): 143⁃146,151. |
CHI W K, XIE P C. Theories and Research Progress on Improving the Surface Quality of Microcellular⁃Foamed Products[J]. Plastic, 2020, 49(1): 143⁃146,151. | |
57 | 李 冰. 微细发泡注塑成型制品表面质量改善的研究[D]. 上海:上海交通大学, 2016. |
58 | 胡瑞生, 王 毅, 张 翔, 等. 注塑微发泡制品表面质量和发泡形貌的研究进展[J]. 工程塑料应用, 2016, 44(3): 135⁃140. |
HU R S, WANG Y, ZHAGN X, et al. Research Progress on Surface Quality and Foam Morphology of Injection Molded Microcellular⁃Foamed Products[J]. Engineering Plastics Application, 2016, 44(3): 135⁃140. | |
59 | 李 帅, 赵国群, 管延锦, 等. 模具型腔气体压力对微发泡注塑件表面质量的影响[J]. 机械工程学报, 2015, 51(10): 79⁃85. |
LI S, ZHAO G Q, GUAN Y J, et al. The Influence of Mould Cavity Gas Pressure on the Surface Quality of Micro⁃foaming Injection Molded Parts[J]. Journal of Mechanical Engineering, 2015, 51(10): 79⁃85. | |
60 | CHEN S C, HSU P S, LIN Y W. Establishment of Gas Counter Pressure Technology and Its Application to Improve the Surface Quality of Microcellular Injection Molded Parts[J]. International Polymer Processing, 2011, 26(3): 275⁃282. |
61 | BLEDZKI A K, KIRSCHLING H, STEINBICHLER G, et al. Polycarbonate Microfoams with a Smooth Surface and Higher Notched Impact Strength[J]. Journal of Cellular Plastics, 2016, 40(6): 489⁃496. |
62 | XU J, KISHBAUGH L. Simple Modeling of the Mechanical Properties with Part Weight Reduction for Microcellular Foam Plastic[J]. Journal of Cellular Plastics, 2016, 39(1): 29⁃47. |
63 | CHEN S C, HSU P S, HWANG S S. The Effects of Gas Counter Pressure and Mold Temperature Variation on the Surface Quality and Morphology of the Microcellular Polystyrene Foams[J]. Journal of Applied Polymer Science, 2013, 127(6): 4 769⁃4 776. |
64 | 董桂伟, 赵国群, 李 帅, 等. 变模温与型腔气体反压辅助微孔发泡注塑技术及其产品内外泡孔结构演变[J]. 高分子材料科学与工程, 2020, 36(1): 89⁃98. |
DONG G W, ZHAO G Q, LI S, et al. Variable Mold Temperature and Cavity Gas Back Pressure Assisted Microcellular Foam Injection Molding Technology and Its Product Internal and External Cell Structure Evolution[J]. Polymer Materials Science & Engineering, 2020, 36(1): 89⁃98. | |
65 | 褚建忠. 模内负压对超临界微发泡产品表面质量的影响[J]. 现代塑料加工应用, 2019, 31(1): 54⁃56. |
ZHU J Z. The Influence of In⁃mold Negative Pressure on the Surface Quality of Supercritical Micro⁃foamed Products[J]. Modern Plastics Processing And Applications, 2019, 31(1): 54⁃56. | |
66 | 李 帅. 气体反压技术对注塑熔体填充过程和塑件性能影响规律的研究[D]. 济南:山东大学, 2015. |
67 | 张 翔, 王 恒, 蒋团辉, 等. 气体反压对微孔发泡注塑制品泡孔质量的影响[J]. 工程塑料应用, 2018, 46(11): 62⁃66. |
ZHANG X, WANG H, JIANG T H, et al. Influence of Gas Back Pressure on Cell Quality of Microcellular Foam Injection Molded Products[J]. Engineering Plastics Application, 2018, 46(11): 62⁃66. | |
68 | 王黎明. 发泡环境对聚烯烃发泡材料泡孔质量及表面质量的影响研究[D]. 贵阳:贵州大学, 2019. |
69 | REGLERO RUIZ J A, VINCENT M, AGASSANT J F, et al. Morphological Analysis of Microcellular PP Produced in a Core⁃Back Injection Process Using Chemical Blowing Agents and Gas Counter Pressure[J]. Polymer Engineering & Science, 2015, 55(11): 2 465⁃2 473. |
70 | CHA S W, YOON J D. The Relationship of Mold Temperatures and Swirl Marks on the Surface of Microcellular Plastics[J]. Polymer⁃Plastics Technology and Engineering, 2005, 44(5): 795⁃803. |
71 | WANG G, ZHAO G, WANG X. Experimental Research on the Effects of Cavity Surface Temperature on Surface Appearance Properties of the Moulded Part in Rapid Heat Cycle Moulding Process[J]. The International Journal of Advanced Manufacturing Technology, 2013, 68(5/8): 1 293⁃1 310. |
72 | 毛华杰, 章梦莹, 郭 巍, 等. 微孔发泡注射成型泡孔结构的演变规律[J]. 工程塑料应用, 2017, 45(9): 57⁃62. |
MAO H J, ZHANG M Y, GUO W, et al. Evolution of Cell Structure of Microcellular Foam Injection Molding[J]. Engineering Plastics Application, 2017, 45(9): 57⁃62. | |
73 | 史展林, 张 磊, 侯俊吉, 等. 快速热循环注塑成型技术发展综述[J]. 精密成形工程, 2017, 9(5): 1⁃18. |
SHI Z L, ZHANG L, HOU J J, et al. Review of the Development of Rapid Thermal Cycle Injection Molding Technology[J]. Journal of Netshape Forming Engineering, 2017, 9(5): 1⁃18. | |
74 | 陈浩生. 石墨烯镀层辅助快速热循环工艺对注塑制品的微观形态与性能的影响研究[D]. 北京:北京化工大学, 2018. |
75 | 王 勇. 基于快速随形热冷的高光无痕注塑成型[D]. 武汉:湖北工业大学, 2018. |
76 | 赵兴旺. 浅析双色高光注塑产品的成型工艺和性能及在汽车行业中的应用[J]. 时代汽车, 2019(6): 115⁃116. |
ZHAO X W. Analysis on the Molding Process and Performance of Two⁃Color High⁃Gloss Injection Products and their Application in the Automotive Industry[J]. Auto Time, 2019(6): 115⁃116. | |
77 | 傅莹龙, 褚建忠, 邵明朝. 高光后盖热流道注塑模具结构设计[J]. 工程塑料应用, 2020, 48(3): 104⁃108. |
FU Y L, ZHU J Z, SHAO M C. Structure Design of Injection Mould with Hot Runner for High⁃gloss Back Cover[J]. Engineering Plastics Application, 2020, 48(3): 104⁃108. | |
78 | 雷继梅, 倪君杰, 黄 瑶, 等. 高光三色汽车尾灯灯罩注塑工艺参数优化[J]. 现代塑料加工应用, 2020, 32(1): 46⁃49. |
LEI J M, NI J J, HUANG Y, et al. Optimization of Injection Molding Process Parameters for High⁃Gloss Three⁃Color Automobile Taillight Lampshade[J]. Modern Plastics Processing and Applications, 2020, 32(1): 46⁃49. | |
79 | 宋仁军, 李金山, 苟军强, 等. 塑料高光成型技术影响因素研究[J]. 汽车工艺师, 2020(10): 43⁃47. |
SONG R J, LI J S, GOU J Q, et al. Research on Influencing Factors of Plastic High Gloss Molding Technology[J]. Auto Manufacturing Engineer, 2020(10): 43⁃47. | |
80 | 陶永亮, 欧阳婷. 高光无痕注塑模具材料选用思考[J]. 橡塑技术与装备, 2020, 46(22): 31⁃34. |
TAO Y L, OU Y T. Considerations on the Selection of High⁃Gloss Seamless Injection Mold Materials[J]. China Rubber/Plastics Technology and Equipment, 2020, 46(22): 31⁃34. | |
81 | XIAO C L, HUANG H X, YANG X. Development and Application of Rapid Thermal Cycling Molding with Electric Heating for Improving Surface Quality of Microcellular Injection Molded Parts[J]. Applied Thermal Engineering, 2016, 100: 478⁃489. |
82 | CHEN H L, CHIEN R D, CHEN S C. Using Thermally Insulated Polymer Film for Mold Temperature Control to Improve Surface Quality of Microcellular Injection Molded Parts[J]. International Communications in Heat and Mass Transfer, 2008, 35(8): 991⁃994. |
83 | CHEN S C, LI H M, HWANG S S, et al. Passive Mold Temperature Control By a Hybrid Filming⁃Microcellular Injection Molding Processing[J]. International Communications in Heat and Mass Transfer, 2008, 35(7): 822⁃827. |
84 | LEE J, TURNG L S. Improving Surface Quality of Microcellular Injection Molded Parts Through Mold Surface Temperature Manipulation with Thin Film Insulation[J]. Polymer Engineering & Science, 2010, 50(7): 1 281⁃1 289. |
85 | SUGIMURA Y, MEYER J, HE M Y, et al. On the Mechanical Performance of Closed Cell Al alloy Foams[J]. Acta Materialia, 1997, 45(12): 5 245⁃5 259. |
86 | MILLS N J, ZHU H X. The High Strain Compression of Closed⁃Cell Polymer Foams[J]. Journal of the Mechanics and Physics of Solids, 1999, 47(3): 669⁃695. |
87 | BASTAWROS A. Experimental Analysis of Deformation Mechanisms in a Closed⁃Cell Aluminum Alloy Foam[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(2): 301⁃322. |
88 | YANG C C, NAKAE H. Foam Structure Effect on the Compression Behavior of Foamed Aluminum Alloy[J]. ISIJ International, 2000, 40(12): 1 283⁃1 286. |
89 | GONG W, GAO J C, JIANG M, et al. Modeling and Characterization of the Relationship between Cell Size and Mechanical Behavior of Microcellular PP/Mica Composites[J]. International Polymer Processing, 2010, 25(4): 270⁃274. |
90 | GIBSON L J, ASHBY M. F. Cellular Solids Structure and Properties[M].Second edition. Cambridge: Cambridge University Press, 1997:183⁃197. |
91 | GIBSON L J, ASHBY M. F., HARLEY B. A. Cellular Materials in Nature and Medicine[M]. First edition. Cambridge: Cambridge University Press, 2010:44⁃46. |
92 | 邱启航, 何 海, 何 力, 等. 泡孔结构参数对微孔发泡聚丙烯力学性能影响[J]. 现代塑料加工应用, 2014, 26(2): 32⁃34. |
QIU Q H, HE H, HE L, et al. Influence of Cell Structure Parameters on the Mechanical Properties of Microcellular Foamed Polypropylene[J]. Modern Plastics Processing and Applications, 2014, 26(2): 32⁃34. | |
93 | 武 毅, 刘春丽, 何 力, 等. 泡孔结构参数对微孔发泡HIPS力学性能的影响[J]. 现代塑料加工应用, 2012, 24(2): 19⁃22. |
WU Y, LIU C L, HE L, et al. Influence of Cell Structure Parameters on the Mechanical Properties of Microcellular Foamed HIPS[J]. Modern Plastics Processing and Applications, 2012, 24(2): 19⁃22. |
[1] | 王晓东, 王权, 陈拓, 郑悦. 基于灰色关联分析和熵权法的双色注塑多目标参数优化[J]. 中国塑料, 2022, 36(7): 115-120. |
[2] | 刘义, 孙伟, 曲国兴, 王叶, 袁宁, 杨少林, 许霞, 常小毅, 张宇飞. 薄壁注塑透明聚丙烯专用料的结构与性能分析[J]. 中国塑料, 2022, 36(7): 37-43. |
[3] | 胥永林, 张维合, 冯国树, 宋东阳, 杜海, 王靖, 魏海涛. 智能热水壶主体复杂抽芯及随形水路注塑模设计[J]. 中国塑料, 2022, 36(6): 137-141. |
[4] | 孙文博, 信春玲, 何亚东, 翟玉娇, 闫宝瑞. 玻璃纤维增强PBT微发泡工艺对其制品泡孔结构的影响[J]. 中国塑料, 2022, 36(5): 1-7. |
[5] | 翟玉娇, 信春玲, 何亚东, 闫宝瑞, 乔林军. 聚丙烯/超临界氮气微孔注塑充模过程工艺参数研究[J]. 中国塑料, 2022, 36(3): 69-74. |
[6] | 宋仁达, 武高健, 陈俊翔, 张有忱, 杨卫民, 谢鹏程. 微孔发泡PP/PET/CNTs复合材料的制备及其电磁屏蔽效能研究[J]. 中国塑料, 2022, 36(2): 1-7. |
[7] | 张响, 闫振昊, 孔小亚, 朱建晓, 关国涛, 赵娜, 李倩. 盘式螺杆微注塑机动盘结构优化研究[J]. 中国塑料, 2022, 36(2): 147-156. |
[8] | 翟玉娇, 信春玲, 何亚东, 闫宝瑞, 乔林军. 微发泡注塑制品表面质量的优化研究[J]. 中国塑料, 2022, 36(2): 19-26. |
[9] | 张维合, 冯国树, 朱晓敏, 吴梓纯, 叶明山, 杜海, 宋东阳, 王靖. 汽车右后门板顺序阀热流道大型薄壁注塑模具设计[J]. 中国塑料, 2022, 36(1): 166-171. |
[10] | 乔林军, 信春玲, 何亚东, 翟玉娇, 闫宝瑞. 新型微发泡气体注射器注气过程可视化研究[J]. 中国塑料, 2021, 35(9): 128-135. |
[11] | 刘庆东. 动定模开模方向斜抽芯注塑模具设计[J]. 中国塑料, 2021, 35(6): 100-105. |
[12] | 陈洪土, 张维合. 车载探测雷达固定架双色注塑模设计[J]. 中国塑料, 2021, 35(6): 106-110. |
[13] | 孔小亚, 张响, 朱建晓, 侯川玉, 关国涛, 闫振昊, 李倩. 盘式螺杆微注塑机塑化性能研究[J]. 中国塑料, 2021, 35(5): 113-118. |
[14] | 蔡恒芳, 孙玲. 注射成型发泡过程中温度和剪切速率对CO2扩散行为影响的分子动力学研究[J]. 中国塑料, 2021, 35(3): 83-89. |
[15] | 孙令真, 叶烁. 分体空调底盘注塑模具设计[J]. 中国塑料, 2021, 35(12): 129-136. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||