
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2021, Vol. 35 ›› Issue (11): 144-160.DOI: 10.19491/j.issn.1001-9278.2021.11.022
收稿日期:
2021-03-29
出版日期:
2021-11-26
发布日期:
2021-11-23
Received:
2021-03-29
Online:
2021-11-26
Published:
2021-11-23
Contact:
ZHAO Guanghui
E-mail:zhaogh@swpu.edu.cn
摘要:
回顾了近10年复合材料胶接接头力学性能的最新研究进展,从搭接结构、黏合剂、被粘物、环境条件以及接头缺陷等方面,综述各种因素对接头力学性能的定性影响趋势和定量影响程度,为复合材料构件之间的连接设计提供依据。
中图分类号:
冯闯, 赵广慧. 复合材料胶接接头力学性能的研究进展[J]. 中国塑料, 2021, 35(11): 144-160.
FENG Chuang, ZHAO Guanghui. Research Progress on Mechanical Properties of Adhesive Joints in Composite Materials[J]. China Plastics, 2021, 35(11): 144-160.
参 考文 献 | 搭接结构 | 示意图 | 实物图 |
---|---|---|---|
[ | 单搭接 | ![]() | ![]() |
[ | 平?折?平型 | ![]() | ![]() |
[ | 波浪型 | ![]() | ![]() |
[ | 对接型 | ![]() | ![]() |
[ | 嵌接型 | ![]() | ![]() |
[ | 阶梯型 | ![]() | ![]() |
[ | L型和T型 | ![]() | ![]() |
[ | 管状型 | ![]() | ![]() |
![]() | ![]() | ||
[ | 双搭接 | ![]() | ![]() |
参 考文 献 | 搭接结构 | 示意图 | 实物图 |
---|---|---|---|
[ | 单搭接 | ![]() | ![]() |
[ | 平?折?平型 | ![]() | ![]() |
[ | 波浪型 | ![]() | ![]() |
[ | 对接型 | ![]() | ![]() |
[ | 嵌接型 | ![]() | ![]() |
[ | 阶梯型 | ![]() | ![]() |
[ | L型和T型 | ![]() | ![]() |
[ | 管状型 | ![]() | ![]() |
![]() | ![]() | ||
[ | 双搭接 | ![]() | ![]() |
黏合剂 | 性能参数 | |||
---|---|---|---|---|
弹性模量/MPa | 泊松比 | 拉伸强度/MPa | 剪切强度/MPa | |
Araldites 2015 [ | 1 850 | 0.33 | 21.63 | 17.90 |
DP460 [ | 2 077 | 0.38 | 38.40 | - |
Aradites AV 138 [ | 4 890 | 0.35 | 39.45 | 30.20 |
AF163?2K [ | 1 103 | 0.34 | 48.26 | 39.90 |
Sika Force 7725 [ | 490 | 0.30 | 11.48 | 10.17 |
Loctite EA?9466 [ | 1 911 | 0.35 | 44.38 | - |
黏合剂 | 性能参数 | |||
---|---|---|---|---|
弹性模量/MPa | 泊松比 | 拉伸强度/MPa | 剪切强度/MPa | |
Araldites 2015 [ | 1 850 | 0.33 | 21.63 | 17.90 |
DP460 [ | 2 077 | 0.38 | 38.40 | - |
Aradites AV 138 [ | 4 890 | 0.35 | 39.45 | 30.20 |
AF163?2K [ | 1 103 | 0.34 | 48.26 | 39.90 |
Sika Force 7725 [ | 490 | 0.30 | 11.48 | 10.17 |
Loctite EA?9466 [ | 1 911 | 0.35 | 44.38 | - |
参考文献 | 被粘物 | 黏合剂 | 增强相 | 纤维 长度 | 纤维 直径 | 纤维 取向 | 力学参数 | 提升百分比/ % | |
---|---|---|---|---|---|---|---|---|---|
[ | 钢/钢 | Selleys Araldite | 碳纳米管 | 50 μm | 8~15 nm | 随机 | 剪切 强度/MPa | 29.7 | 0.3 |
Kevlar纤维 | 14 mm | 10~12 μm | 31.4 | 9.4 | |||||
[ | Al/Al | UHU plus endfest 300 | AISI 304钢纤维 | — | 0.6 nm | 纵向 | 抗弯承载 能力/N | 580.0 | 5.5 |
650.0 | 18.2 | ||||||||
660.0 | 20.0 | ||||||||
[ | Al/Al | DP270 | 碳纳米管 | 10~30 mm | 10~20 nm | 随机 | 失效 载荷/N | 2 316.0 | 11.1 |
DP125 | 6 672.0 | 2.2 | |||||||
DP460 | 15 867.0 | 7.5 | |||||||
[ | CFRP/CFRP | 环氧树脂105 | 碳纳米纤维 | 30~200 μm | 70~300 nm | 随机 | I型断 裂能/J | 377.0 | 181.3 |
837.0 | 524.6 | ||||||||
1 290.0 | 862.7 | ||||||||
[ | CFRP/CFRP | AS4?12K | 碳纳米纤维 | 30 μm | 12~20 nm | 随机 | I型断 裂能/J | 99.1 | 14.8 |
碳纳米管 | 1 mm | 10 nm | 116.8 | 35.3 |
参考文献 | 被粘物 | 黏合剂 | 增强相 | 纤维 长度 | 纤维 直径 | 纤维 取向 | 力学参数 | 提升百分比/ % | |
---|---|---|---|---|---|---|---|---|---|
[ | 钢/钢 | Selleys Araldite | 碳纳米管 | 50 μm | 8~15 nm | 随机 | 剪切 强度/MPa | 29.7 | 0.3 |
Kevlar纤维 | 14 mm | 10~12 μm | 31.4 | 9.4 | |||||
[ | Al/Al | UHU plus endfest 300 | AISI 304钢纤维 | — | 0.6 nm | 纵向 | 抗弯承载 能力/N | 580.0 | 5.5 |
650.0 | 18.2 | ||||||||
660.0 | 20.0 | ||||||||
[ | Al/Al | DP270 | 碳纳米管 | 10~30 mm | 10~20 nm | 随机 | 失效 载荷/N | 2 316.0 | 11.1 |
DP125 | 6 672.0 | 2.2 | |||||||
DP460 | 15 867.0 | 7.5 | |||||||
[ | CFRP/CFRP | 环氧树脂105 | 碳纳米纤维 | 30~200 μm | 70~300 nm | 随机 | I型断 裂能/J | 377.0 | 181.3 |
837.0 | 524.6 | ||||||||
1 290.0 | 862.7 | ||||||||
[ | CFRP/CFRP | AS4?12K | 碳纳米纤维 | 30 μm | 12~20 nm | 随机 | I型断 裂能/J | 99.1 | 14.8 |
碳纳米管 | 1 mm | 10 nm | 116.8 | 35.3 |
参考文献 | 被粘物 | 黏合剂 | 搭接长度/mm | 胶层厚度/mm | 力学参数 | |
---|---|---|---|---|---|---|
[ | GFRP/GFRP | 两组分环氧树脂 | 12.7 | 1 | 失效载荷/kN | 3.7 |
2 | 2.4 | |||||
4 | 1.5 | |||||
5 | 2.1 | |||||
25.4 | 2 | 3.7 | ||||
38.1 | 2 | 5.1 | ||||
50.8 | 2 | 4.8 | ||||
63.5 | 2 | 5.9 | ||||
[ | CFRP/CFRP | MTA?240 | 10 | 0.13 | 失效载荷/kN | 3.1 |
0.26 | 3.7 | |||||
0.39 | 4.0 | |||||
0.52 | 4.8 | |||||
30 | 0.13 | 8.8 | ||||
0.26 | 10.0 | |||||
0.39 | 10.8 | |||||
0.52 | 11.0 | |||||
60 | 0.13 | 16.9 | ||||
0.26 | 19.0 | |||||
0.39 | 19.6 | |||||
0.52 | 20.1 | |||||
80 | 0.13 | 21.9 | ||||
0.26 | 25.2 | |||||
0.39 | 27.5 | |||||
0.52 | 28.1 | |||||
[ | CFRP/CFRP | J116B | 2 | 0.15 | 失效载荷/kN | 1.8 |
5 | 3.5 | |||||
10 | 6.3 | |||||
20 | 9.4 | |||||
[ | Al/CFRP | DP460 | 12.7 | 1 | 失效载荷/kN | 3.7 |
2 | 2.4 | |||||
4 | 1.5 | |||||
5 | 2.1 | |||||
[ | CFRP/CFRP | Aradites AV 138 | 20 | 0.05 | 失效载荷/kN | 4.8 |
40 | 5.2 | |||||
60 | 7.3 | |||||
Sika Force 7888 | 20 | 8.1 | ||||
40 | 16.8 | |||||
60 | 25.0 | |||||
[ | 6061?T6铝合金 | FM73M | 10 | 0.15 | 剪切强度/MPa | 27.5 |
20 | 24.8 | |||||
30 | 19.4 | |||||
[ | Al/Al | Henkel Loctites330 | 25 | 0.4 | 剪切强度/MPa | 6.4 |
0.5 | 6.0 | |||||
0.6 | 5.5 | |||||
0.7 | 3.3 | |||||
0.8 | 2.7 |
参考文献 | 被粘物 | 黏合剂 | 搭接长度/mm | 胶层厚度/mm | 力学参数 | |
---|---|---|---|---|---|---|
[ | GFRP/GFRP | 两组分环氧树脂 | 12.7 | 1 | 失效载荷/kN | 3.7 |
2 | 2.4 | |||||
4 | 1.5 | |||||
5 | 2.1 | |||||
25.4 | 2 | 3.7 | ||||
38.1 | 2 | 5.1 | ||||
50.8 | 2 | 4.8 | ||||
63.5 | 2 | 5.9 | ||||
[ | CFRP/CFRP | MTA?240 | 10 | 0.13 | 失效载荷/kN | 3.1 |
0.26 | 3.7 | |||||
0.39 | 4.0 | |||||
0.52 | 4.8 | |||||
30 | 0.13 | 8.8 | ||||
0.26 | 10.0 | |||||
0.39 | 10.8 | |||||
0.52 | 11.0 | |||||
60 | 0.13 | 16.9 | ||||
0.26 | 19.0 | |||||
0.39 | 19.6 | |||||
0.52 | 20.1 | |||||
80 | 0.13 | 21.9 | ||||
0.26 | 25.2 | |||||
0.39 | 27.5 | |||||
0.52 | 28.1 | |||||
[ | CFRP/CFRP | J116B | 2 | 0.15 | 失效载荷/kN | 1.8 |
5 | 3.5 | |||||
10 | 6.3 | |||||
20 | 9.4 | |||||
[ | Al/CFRP | DP460 | 12.7 | 1 | 失效载荷/kN | 3.7 |
2 | 2.4 | |||||
4 | 1.5 | |||||
5 | 2.1 | |||||
[ | CFRP/CFRP | Aradites AV 138 | 20 | 0.05 | 失效载荷/kN | 4.8 |
40 | 5.2 | |||||
60 | 7.3 | |||||
Sika Force 7888 | 20 | 8.1 | ||||
40 | 16.8 | |||||
60 | 25.0 | |||||
[ | 6061?T6铝合金 | FM73M | 10 | 0.15 | 剪切强度/MPa | 27.5 |
20 | 24.8 | |||||
30 | 19.4 | |||||
[ | Al/Al | Henkel Loctites330 | 25 | 0.4 | 剪切强度/MPa | 6.4 |
0.5 | 6.0 | |||||
0.6 | 5.5 | |||||
0.7 | 3.3 | |||||
0.8 | 2.7 |
参考文献 | 被粘物 | 黏合剂 | 搭接长度/mm | 胶层厚度/mm | 表面处理 | 力学参数 | 提升百分比/% | ||
---|---|---|---|---|---|---|---|---|---|
方法 | 打磨方向 | ||||||||
[ | CFRP/CFRP | Scotch?Weld AF163?2K | 25.0 | 0.30 | 手工打磨 | 随机 | 剪切强度/ MPa | 20.50 | 4.88 |
喷砂 | - | 22.20 | 13.85 | ||||||
剥离层 | - | 22.50 | 15.38 | ||||||
[ | CFRP/CFRP | AF1632K | 25.4 | 0.76 | 砂纸打磨 | 随机 | 剪切强度 MPa | 9.11 | 3.58 |
喷砂 | - | 8.38 | 4.45 | ||||||
剥离层 | - | 10.13 | 11.10 | ||||||
EA 934NA | 砂纸打磨 | 随机 | 6.57 | 2.05 | |||||
喷砂 | - | 7.45 | 5.53 | ||||||
剥离层 | - | 4.65 | 8.30 | ||||||
EA 9309NA | 砂纸打磨 | 随机 | 9.21 | 13.43 | |||||
喷砂 | - | 9.28 | 6.53 | ||||||
剥离层 | - | 5.51 | 5.97 | ||||||
[ | GFRP/Steel | 环氧树脂 | 25.0 | 0.20 | 喷砂 | - | 失效载荷 /kN | 6.73 | 9.00 |
针刺 | - | 4.44 | 5.21 | ||||||
钢丝刷 | 随机 | 4.09 | 11.39 | ||||||
[ | CFRP/CFRP | Araldite 2015 | 30.0 | — | 手工打磨 | 平行于纤维 | 剪切强度/MPa | 16.11 | 0.68 |
垂直于纤维 | 16.00 | 0 | |||||||
随机 | 17.58 | 9.87 | |||||||
[ | CFRP/CFRP | NPEL?128 | 12.5 | 0.25 | 激光 | — | 剪切强度/MPa | 18.58 | 40.80 |
[ | CFRP/CFRP | HMF 934 | 10.0 | 1.50 | 激光 | — | 剪切强度/MPa | 21.20 | 48.00 |
参考文献 | 被粘物 | 黏合剂 | 搭接长度/mm | 胶层厚度/mm | 表面处理 | 力学参数 | 提升百分比/% | ||
---|---|---|---|---|---|---|---|---|---|
方法 | 打磨方向 | ||||||||
[ | CFRP/CFRP | Scotch?Weld AF163?2K | 25.0 | 0.30 | 手工打磨 | 随机 | 剪切强度/ MPa | 20.50 | 4.88 |
喷砂 | - | 22.20 | 13.85 | ||||||
剥离层 | - | 22.50 | 15.38 | ||||||
[ | CFRP/CFRP | AF1632K | 25.4 | 0.76 | 砂纸打磨 | 随机 | 剪切强度 MPa | 9.11 | 3.58 |
喷砂 | - | 8.38 | 4.45 | ||||||
剥离层 | - | 10.13 | 11.10 | ||||||
EA 934NA | 砂纸打磨 | 随机 | 6.57 | 2.05 | |||||
喷砂 | - | 7.45 | 5.53 | ||||||
剥离层 | - | 4.65 | 8.30 | ||||||
EA 9309NA | 砂纸打磨 | 随机 | 9.21 | 13.43 | |||||
喷砂 | - | 9.28 | 6.53 | ||||||
剥离层 | - | 5.51 | 5.97 | ||||||
[ | GFRP/Steel | 环氧树脂 | 25.0 | 0.20 | 喷砂 | - | 失效载荷 /kN | 6.73 | 9.00 |
针刺 | - | 4.44 | 5.21 | ||||||
钢丝刷 | 随机 | 4.09 | 11.39 | ||||||
[ | CFRP/CFRP | Araldite 2015 | 30.0 | — | 手工打磨 | 平行于纤维 | 剪切强度/MPa | 16.11 | 0.68 |
垂直于纤维 | 16.00 | 0 | |||||||
随机 | 17.58 | 9.87 | |||||||
[ | CFRP/CFRP | NPEL?128 | 12.5 | 0.25 | 激光 | — | 剪切强度/MPa | 18.58 | 40.80 |
[ | CFRP/CFRP | HMF 934 | 10.0 | 1.50 | 激光 | — | 剪切强度/MPa | 21.20 | 48.00 |
参考文献 | 搭接类型 | 被粘物 | 黏合剂 | 加载类型 | 温度/℃ | 接头或黏合剂的力学性能 | |
---|---|---|---|---|---|---|---|
[ | SLJ | 6082?T651铝合金/6082?T651铝合金 | Sikaflex 552 | II型 | -40 | 黏合剂剪切强度/MPa | 6.98 |
20 | 3.23 | ||||||
80 | 2.54 | ||||||
AS1805RTV | 20 | 1.25 | |||||
100 | 0.66 | ||||||
200 | 0.42 | ||||||
300 | 0.16 | ||||||
[ | BJ | 钢/钢 | XN1244 | I型 | 25 | 黏合剂拉伸强度/MPa | 71.20 |
100 | 45.70 | ||||||
125 | 24.05 | ||||||
150 | 7.90 | ||||||
[ | SLJ | GFRP/钢 | Thermo?Poxy? | I型 | 25 | 接头剪切强度/MPa | 17.48 |
50 | 6.14 | ||||||
100 | 2.26 | ||||||
150 | 1.72 | ||||||
[ | BJ | CFRP/Al | Araldites 2015 | I型 | -40 | 接头失效强度/MPa | 21.2 |
-10 | 19.8 | ||||||
25 | 17.8 | ||||||
80 | 11.3 | ||||||
[ | BJ | BFRP/Al | Araldites 2015 | II型 | -40 | 接头失效强度/MPa | 28.1 |
-10 | 21.7 | ||||||
25 | 18.2 | ||||||
80 | 12.5 | ||||||
SJ | -40 | 24.1 | |||||
-10 | 22.5 | ||||||
25 | 19.5 | ||||||
80 | 9.8 | ||||||
TASJ | -40 | 35.6 | |||||
-10 | 33.8 | ||||||
25 | 29.8 | ||||||
80 | 9.9 | ||||||
[ | SLJ | Q23钢/AA6016铝合金 | Araldites 2015 | I型 | -30 | 接头失效载荷/kN | 5.7 |
20 | 5.9 | ||||||
80 | 6.5 | ||||||
Araldites AV 138 | -30 | 5.0 | |||||
20 | 5.6 | ||||||
80 | 5.5 | ||||||
[ | SLJ | 钢/钢 | ESP110 | I型 | -40 | 接头失效载荷/kN | 3.5 |
20 | 3.8 | ||||||
90 | 2.5 | ||||||
[ | BJ | Al/Al | 环氧黏合剂 | I型 | 20 | 接头失效载荷/N | 107 |
-20 | 215 | ||||||
-60 | 275 | ||||||
-80 | 253 | ||||||
II型 | 20 | 128 | |||||
-20 | 164 | ||||||
-60 | 143 | ||||||
-80 | 171 | ||||||
I/II混合型 | 20 | 117 | |||||
-20 | 225 | ||||||
-60 | 199 | ||||||
-80 | 269 |
参考文献 | 搭接类型 | 被粘物 | 黏合剂 | 加载类型 | 温度/℃ | 接头或黏合剂的力学性能 | |
---|---|---|---|---|---|---|---|
[ | SLJ | 6082?T651铝合金/6082?T651铝合金 | Sikaflex 552 | II型 | -40 | 黏合剂剪切强度/MPa | 6.98 |
20 | 3.23 | ||||||
80 | 2.54 | ||||||
AS1805RTV | 20 | 1.25 | |||||
100 | 0.66 | ||||||
200 | 0.42 | ||||||
300 | 0.16 | ||||||
[ | BJ | 钢/钢 | XN1244 | I型 | 25 | 黏合剂拉伸强度/MPa | 71.20 |
100 | 45.70 | ||||||
125 | 24.05 | ||||||
150 | 7.90 | ||||||
[ | SLJ | GFRP/钢 | Thermo?Poxy? | I型 | 25 | 接头剪切强度/MPa | 17.48 |
50 | 6.14 | ||||||
100 | 2.26 | ||||||
150 | 1.72 | ||||||
[ | BJ | CFRP/Al | Araldites 2015 | I型 | -40 | 接头失效强度/MPa | 21.2 |
-10 | 19.8 | ||||||
25 | 17.8 | ||||||
80 | 11.3 | ||||||
[ | BJ | BFRP/Al | Araldites 2015 | II型 | -40 | 接头失效强度/MPa | 28.1 |
-10 | 21.7 | ||||||
25 | 18.2 | ||||||
80 | 12.5 | ||||||
SJ | -40 | 24.1 | |||||
-10 | 22.5 | ||||||
25 | 19.5 | ||||||
80 | 9.8 | ||||||
TASJ | -40 | 35.6 | |||||
-10 | 33.8 | ||||||
25 | 29.8 | ||||||
80 | 9.9 | ||||||
[ | SLJ | Q23钢/AA6016铝合金 | Araldites 2015 | I型 | -30 | 接头失效载荷/kN | 5.7 |
20 | 5.9 | ||||||
80 | 6.5 | ||||||
Araldites AV 138 | -30 | 5.0 | |||||
20 | 5.6 | ||||||
80 | 5.5 | ||||||
[ | SLJ | 钢/钢 | ESP110 | I型 | -40 | 接头失效载荷/kN | 3.5 |
20 | 3.8 | ||||||
90 | 2.5 | ||||||
[ | BJ | Al/Al | 环氧黏合剂 | I型 | 20 | 接头失效载荷/N | 107 |
-20 | 215 | ||||||
-60 | 275 | ||||||
-80 | 253 | ||||||
II型 | 20 | 128 | |||||
-20 | 164 | ||||||
-60 | 143 | ||||||
-80 | 171 | ||||||
I/II混合型 | 20 | 117 | |||||
-20 | 225 | ||||||
-60 | 199 | ||||||
-80 | 269 |
缺陷尺寸/mm | 缺陷位置 | 失效强度/MPa |
---|---|---|
0 | L/2 | 159 |
0 | 159 | |
L/4 | 159 | |
6 | L/2 | 149 |
0 | 142 | |
L/4 | 135 | |
12 | L/2 | 141 |
0 | 133 | |
L/4 | 126 | |
18 | L/2 | 135 |
0 | 114 | |
L/4 | 110 | |
25 | L/2 | 109 |
0 | 97 | |
L/4 | 97 |
缺陷尺寸/mm | 缺陷位置 | 失效强度/MPa |
---|---|---|
0 | L/2 | 159 |
0 | 159 | |
L/4 | 159 | |
6 | L/2 | 149 |
0 | 142 | |
L/4 | 135 | |
12 | L/2 | 141 |
0 | 133 | |
L/4 | 126 | |
18 | L/2 | 135 |
0 | 114 | |
L/4 | 110 | |
25 | L/2 | 109 |
0 | 97 | |
L/4 | 97 |
1 | PARASHAR A, MERTINY P. Adhesively Bonded Composite Tubular Joints: Review [J]. International Journal of Adhesion and Adhesives, 2012, 38:58⁃68. |
2 | KANERVA M, SAARELA O. The Peel Ply Surface Treatment for Adhesive Bonding of Composites: A Review [J]. International Journal of Adhesion and Adhesives, 2013, 43:60⁃69. |
3 | SINMAZçELIK T, AVCU E, BORA M Ö, et al. A Review: Fibre Metal Laminates, Background, Bonding Types and Applied Test Methods [J]. Materials & Design, 2011, 32(7): 3 671⁃3 685. |
4 | NETO J A B P, CAMPILHO R D S G, SILVA L F MDA. Parametric Study of Adhesive Joints with Compo⁃sites [J]. International Journal of Adhesion and Adhesives, 2012, 37:96⁃101. |
5 | ANYFANTIS K N, TSOUVALIS N G. Loading and Fracture Response of CFRP⁃to⁃Steel Adhesively Bonded Joints with Thick Adherents⁃Part II: Numerical Simulation [J]. Composite Structures, 2013, 96:858⁃868. |
6 | OZEL A, YAZICI B, AKPINAR S, et al. A Study on The Strength of Adhesively Bonded Joints with Different Adherends [J]. Composites Part B: Engineering, 2014, 62:167⁃174. |
7 | GüLTEKIN K, AKPINAR S, ÖZEL A. The Effect of The Adherend Width on The Strength of Adhesively Bon⁃ded Single⁃Lap Joint: Experimental and Numerical Analysis [J]. Composites Part B: Engineering, 2014, 60:736⁃745. |
8 | JEN Y M, KO C W. Evaluation of Fatigue Life of Adhesively Bonded Aluminum Single⁃Lap Joints Using Interfacial Parameters [J]. International Journal of Fatigue, 2010, 32(2): 330⁃340. |
9 | ISLAM M S, TONG L. Effects of Hygrothermal and Ambient Humidity Conditioning on Shear Strength of Metal⁃GFRP Single Lap Joints Co⁃Cured in and out of Water [J]. International Journal of Adhesion and Adhesives, 2016, 68:305⁃316. |
10 | NANDA KISHORE A, SIVA PRASAD N. An Experimental Study of Flat⁃Joggle⁃Flat Bonded Joints in Composite Laminates [J]. International Journal of Adhesion and Adhesives, 2012, 35:55⁃58. |
11 | 许昶,刘志明.CFRP平_折_平连接接头试验研究与数值模拟 [J] .北京航空航天大学学报,2019,45(17):2 207⁃2 216. |
XU C,LIU Z M. Experimental Study and Numerical Simulation on CFRP Flat⁃Joggle⁃Flat Joints [J] . Journal of Beijing University of Aeronautics and Astronautics, 2019,45(11):2 207⁃2 216. | |
12 | NOSOUHI F, FARAHANI M, ANSARI M. Experimental and Numerical Study on The Composite Adhesive Joint Reinforcement Using Wavy Edge [J]. Journal of Adhesion Science and Technology, 2017, 32(9): 1 007⁃1 017. |
13 | RAHMANI A, CHOUPANI N. Experimental and Numerical Analysis of Fracture Parameters of Adhsively Bonded Joints at Low Temperatures [J]. Engineering Fracture Mechanics, 2019, 207:222⁃236. |
14 | MU W, NA J, TAN W, et al. Durability of Adhesively Bonded CFRP⁃Aluminum Alloy Joints Subjected to Coupled Temperature and Alternating Load [J]. International Journal of Adhesion and Adhesives, 2020, 99. |
15 | 刘子仙,陈晓峰,周鑫,等.一种增加碳纤维复合材料管件与接头之间连接强度的设计方法:中国,2017103562038[P]. 2017⁃10⁃20. |
16 | YOO J S, TRUONG V H, PARK M Y, et al. Parametric Study on Static and Fatigue Strength Recovery of Scarf⁃Patch⁃Repaired Composite Laminates [J]. Composite Structures, 2016, 140:417⁃432. |
17 | LOUSDAD A, MEGUENI A, BOUCHIKHI A S. Geometric Edge Shape Based Optimization for Interfacial Shear Stress Reduction in Fiber Reinforced Polymer Plate Retrofitted Concrete Beams [J]. Computational Materials Science, 2010, 47(4): 911⁃918. |
18 | 杜宇,杨涛,牛雪娟.炭纤维层合板和铝合金板阶梯形胶接接头拉伸失效实验 [J] .固体火箭技术,2018,41(4):503⁃508. |
DU Y,YANG T,NIU X J. Experimental Study on Tensile and Bending Properties of Scarf⁃Patch⁃Repaired Composite Laminates [J]. Journal of Solid Rocket Technology, 2018, 41(4):503⁃508. | |
19 | BANEA M D, SILVA L F MDA. Adhesively Bonded Joints in Composite Materials: An Overview [J]. Proceedings of The Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2016, 223(1): 1⁃18. |
20 | IGNACIO R R, JUAN L L G V. Method For Simulating The Behavior of A Bonded Joint of Two Parts:US, 8229717B2[P]. 2012⁃07⁃24. |
21 | 周祥,胡业发,黄向阳,等.碳纤维复合材料T型胶接接头损伤行为研究 [J].数字制造科学,2018,16(4):269⁃274. |
ZHOU X,HU Y F,HUANG X Y,et al. Study on Damage Behaviour of CFRP T⁃joint[J].Digital Manufacture Science, 2018, 16(4):269⁃274. | |
22 | LIU Y, LEMANSKI S, ZHANG X. Parametric Study of Size, Curvature and Free Edge Effects on The Predicted Strength of Bonded Composite Joints [J]. Composite Structures, 2018, 202:364⁃373. |
23 | QIU C, FENG P, YANG Y, et al. Joint Capacity of Bonded Sleeve Connections for Tubular Fibre Reinforced Polymer Members [J]. Composite Structures, 2017, 163:267⁃279. |
24 | 王海鹏,刘梦媛,陈新文.复合材料管⁃铝接头胶接结构抗拉性能试验研究 [J].纤维复合材料,2013(3):27⁃29. |
WANG H P, LIU M Y, CHEN X W. Experimental Study on Properties of Adhesive Bonded Components of Composites Pipe⁃Aluminum Joint [J].Fiber Composites, 2013(3):27⁃29. | |
25 | LI J, YAN Y, ZHANG T, et al. Experimental Study of Adhesively Bonded CFRP Joints Subjected to Tensile Loads [J]. International Journal of Adhesion and Adhesives, 2015, 57:95⁃104. |
26 | MARK R G, RONY G G, VIRGINIA H F. Hybrid Metallic/Composite Joint with Enhanced Performance: US,0093422A1[P]. 2018⁃04⁃05. |
27 | YU Q Q, GAO R X, GU X L, et al. Bond Behavior of CFRP⁃Steel Double⁃Lap Joints Exposed to Marine Atmosphere and Fatigue Loading [J]. Engineering Structures, 2018, 175:76⁃85. |
28 | CAMPILHO R D S G, PINTO A M G, BANEA M D, et al. Strength Improvement of Adhesively⁃Bonded Joints Using A Reverse⁃Bent Geometry [J]. Journal of Adhesion Science and Technology, 2012, 25(18): 2 351⁃2 368. |
29 | XU W, LI G. Finite Difference Three⁃Dimensional Solution of Stresses in Adhesively Bonded Composite Tubular Joint Subjected to Torsion [J]. International Journal of Adhesion and Adhesives, 2010, 30(4): 191⁃199. |
30 | AIMMANEE S, HONGPIMOLMAS P. Stress Analysis of Adhesive⁃Bonded Tubular⁃Coupler Joints with Optimum Variable⁃Stiffness Composite Adherend Under Torsion [J]. Composite Structures, 2017, 164:76⁃89. |
31 | AIMMANEE S, HONGPIMOLMAS P, RUANGJIRA⁃KIT K. Simplified Analytical Model for Adhesive⁃Bonded Tubular Joints with Isotropic and Composite Adherends Subjected to Tension [J]. International Journal of Adhesion and Adhesives, 2018, 86:59⁃72. |
32 | KUMAR S, KHAN M A. An Elastic Solution for Adhesive Stresses in Multi⁃Material Cylindrical Joints [J]. International Journal of Adhesion and Adhesives, 2016, 64:142⁃152. |
33 | NA J, MU W, QIN G, et al. Effect of Temperature on The Mechanical Properties of Adhesively Bonded Basalt FRP⁃Aluminum Alloy Joints in The Automotive Industry [J]. International Journal of Adhesion and Adhesives, 2018, 85:138⁃148. |
34 | REIS P N B, SOARES J R L, PEREIRA A M, et al. Effect of Adherends and Environment on Static and Tran⁃sverse Impact Response of Adhesive Lap Joints [J]. Theoretical and Applied Fracture Mechanics, 2015, 80:79⁃86. |
35 | HAMOODI⁃TABAR M, REZA A. Long⁃Term Shear Stress Distribution in Adhesively Bonded Tubular Joints under Tensile Load Using The Time⁃Temperature Superposition Principle [J]. The Journal of Adhesion, 2019, 1⁃18. |
36 | FERNÁNDEZ⁃CAñADAS L M, IVAñEZ I, SANCHEZ⁃SAEZ S, et al. Effect of Adhesive Thickness and Overlap on The Behavior of Composite Single⁃Lap Joints [J]. Mechanics of Advanced Materials and Structures, 2019, 1⁃10. |
37 | KIM D, LEE D G, KIM J C, et al. Effect of Molecular Weight of Polyurethane Toughening Agent on Adhesive Strength and Rheological Characteristics of Automotive Structural Adhesives [J]. International Journal of Adhesion and Adhesives, 2017, 74:21⁃27. |
38 | DOMUN N, HADAVINIA H, ZHANG T, et al. Improving The Fracture Toughness and The Strength of Epoxy Using Nanomaterials—A Review of The Current Status [J]. Nanoscale, 2015, 7(23): 10 294⁃10 329. |
39 | PALUVAI N R, MOHANTY S, NAYAK S K. Synthesis and Modifications of Epoxy Resins and Their Compo⁃sites: A Review [J]. Polymer⁃Plastics Technology and Engineering, 2014, 53(16): 1 723⁃1 758. |
40 | YANG G, YANG T, YUAN W, et al. The Influence of Surface Treatment on The Tensile Properties of Carbon Fiber⁃Reinforced Epoxy Composites⁃Bonded Joints [J]. Composites Part B: Engineering, 2019, 160:446⁃456. |
41 | AKPINAR I A, GüLTEKIN K, AKPINAR S, et al. Experimental Analysis on The Single⁃Lap Joints Bonded by A Nanocomposite Adhesives Which Obtained by Adding Nanostructures [J]. Composites Part B: Engineering, 2017, 110:420⁃428. |
42 | RIBEIRO F M F, CAMPILHO R D S G, CARBAS R J C, et al. Strength and Damage Growth in Composite Bonded Joints with Defects [J]. Composites Part B: Engineering, 2016, 100:91⁃100. |
43 | SORRENTINO L, POLINI W, BELLINI C, et al. Surface Treatment of CFRP: Influence on Single Lap Joint Performances [J]. International Journal of Adhesion and Adhesives, 2018, 85:225⁃233. |
44 | LIAO L, HUANG C, SAWA T. Effect of Adhesive Thickness, Adhesive Type and Scarf Angle on The Mechanical Properties of Scarf Adhesive Joints [J]. International Journal of Solids and Structures, 2013, 50(25/26): 4 333⁃4 340. |
45 | XU W, WEI Y. Strength and Interface Failure Mechanism of Adhesive Joints [J]. International Journal of Adhesion and Adhesives, 2012, 34:80⁃92. |
46 | QUAN D, URDáNIZ J L, ROUGE C, et al. The Enhancement of Adhesively⁃Bonded Aerospace⁃Grade Composite Joints Using Steel Fibres [J]. Composite Structures, 2018, 198:11⁃18. |
47 | GIV A N, AYATOLLAHI M R, GHAFFARI S H, et al. Effect of Reinforcements at Different Scales on Mechanical Properties of Epoxy Adhesives and Adhesive Joints: a review [J]. Journal of Adhesion, 2018, 94(13): 1 082⁃1 121. |
48 | RAZAVI S M J, AYATOLLAHI M R, ESMAEILI E, et al. Mixed⁃Mode Fracture Response of Metallic Fiber⁃Reinforced Epoxy Adhesive [J]. European Journal of Mechanics ⁃ A/Solids, 2017, 65:349⁃359. |
49 | LADANI R B, WU S, KINLOCH A J, et al. Enhancing Fatigue Resistance and Damage Characterisation in Adhesively⁃Bonded Composite Joints by Carbon Nanofibres [J]. Composites Science and Technology, 2017, 149:116⁃126. |
50 | KIM C⁃H, J⁃HCHOI. Effects of Dispersion Methods and Surface Treatment of Carbon Nano⁃Tubes on Defect Detectability and Static Strengths of Adhesive Joints [J]. Composite Structures, 2017, 176:684⁃691. |
51 | ESMAEILI E, RAZAVI S M J, BAYAT M, et al. Flexural Behavior of Metallic Fiber⁃Reinforced Adhesively Bonded Single Lap Joints [J]. The Journal of Adhesion, 2017, 94(6): 453⁃472. |
52 | WANG B, BAI Y, HU X, et al. Enhanced Epoxy Adhesion between Steel Plates by Surface Treatment and CNT/Short⁃Fibre Reinforcement [J]. Composites Science and Technology, 2016, 127:149⁃157. |
53 | KHORAMISHAD H, KHAKZAD M. Toughening Epoxy Adhesives with Multi⁃Walled Carbon Nanotubes [J]. The Journal of Adhesion, 2016, 94(1): 15⁃29. |
54 | KORAYEM A H, LI C Y, ZHANG Q H, et al. Effect of Carbon Nanotube Modified Epoxy Adhesive on CFRP⁃to⁃Steel Interface [J]. Composites Part B: Engineering, 2015, 79:95⁃104. |
55 | GUDE M R, PROLONGO S G, GóMEZ⁃DEL RíO T, et al. Mode⁃I Adhesive Fracture Energy of Carbon Fibre Composite Joints with Nanoreinforced Epoxy Adhesives [J]. International Journal of Adhesion and Adhesives, 2011, 31(7): 695⁃703. |
56 | TAKEDA T, NARITA F. Fracture Behavior and Crack Sensing Capability of Bonded Carbon Fiber Composite Joints with Carbon Nanotube⁃Based Polymer Adhesive Layer under Mode I Loading [J]. Composites Science and Technology, 2017, 146:26⁃33. |
57 | HPARK J,HCHOI J,HKWEON J. Evaluating The Strengths of Thick Aluminum⁃to⁃Aluminum Joints with Different Adhesive Lengths and Thicknesses [J]. Composite Structures, 2010, 92(9): 2 226⁃2 235. |
58 | QIN Z, YANG K, WANG J, et al. The Effects of Geometrical Dimensions on The Failure of Composite⁃to⁃Composite Adhesively Bonded Joints [J]. The Journal of Adhesion, 2020, 1⁃28. |
59 | 邹田春,秦家徐,李龙辉,等. 搭接长度对钛合金⁃芳纶纤维复合材料单搭接接头胶接性能的影响 [J]. 中国塑料,2020,34(1):17⁃21. |
ZOU T C,QIN J X,LI L H,et al. Effect of Lap Length on Bonding Properties of Titanium Alloy/Aramid Fiber Composites Single Lap Joints [J]. China Plastics,2020,34(1):17⁃21. | |
60 | 杨本宁,郑艳萍,李成,等. 复合材料胶接单搭接连接强度与失效模式研究 [J]. 玻璃钢/复合材料,2019(2):26⁃32. |
YANG B N,ZHENG Y P,LI C,et al. Study on Strength and Failure Mode of Ahesively Bonded Single Lap Joints of Composite Material [J]. Fiber Reinforced Plastics/Composites,2019(2): 26⁃32. | |
61 | 郭霞,关志东,刘遂,等. 搭接长度对复合材料单搭接胶接接头的影响 [J]. 科技导报,2013(7):37⁃41. |
GUO X,GUAN Z D,LIU S,et al. Effect of Lap Length on the Adhesive⁃bonded Single⁃lap Composite Joints [J]. Science & Technology Review,2013(7):37⁃41. | |
62 | ARENAS J M, NARBóN J J, ALíA C. Optimum Adhesive Thickness in Structural Adhesives Joints Using Statistical Techniques Based on Weibull Distribution [J]. International Journal of Adhesion and Adhesives, 2010, 30(3): 160⁃165. |
63 | KUMAR S, TAMPI S. Modeling of Single⁃Lap Composite Adhesive Joints under Mechanical and Thermal Loads [J]. Journal of Adhesion Science and Technology, 2015, 30(7): 759⁃783. |
64 | JI G, OUYANG Z, LI G, et al. Effects of Adhesive Thickness on Global and Local Mode⁃I Interfacial Fracture of Bonded Joints [J]. International Journal of Solids and Structures, 2010, 47(18/19): 2 445⁃2 458. |
65 | BOUTAR Y, NAïMI S, MEZLINI S, et al. Effect of Adhesive Thickness and Surface Roughness on The Shear Strength of Aluminium One⁃Component Polyurethane Adhesive Single⁃Lap Joints for Automotive Applications [J]. Journal of Adhesion Science and Technology, 2016, 30(17): 1 913⁃1 929. |
66 | MARZI S, BIEL A, STIGH U. On Experimental Methods to Investigate The Effect of Layer Thickness on The Fracture Behavior of Adhesively Bonded Joints [J]. International Journal of Adhesion and Adhesives, 2011, 31(8): 840⁃850. |
67 | BUDHE S, BANEA M D, DE BARROS S, et al. An Updated Review of Adhesively Bonded Joints in Compo⁃site Materials [J]. International Journal of Adhesion and Adhesives, 2017, 72:30⁃42. |
68 | ISLAM M S, TONG L, FALZON P J. Influence of Metal Surface Preparation on Its Surface Profile, Contact angle, Surface Energy and Adhesion with Glass Fibre Prepreg [J]. International Journal of Adhesion and Adhesives, 2014, 51:32⁃41. |
69 | ENCINAS N, OAKLEY B R, BELCHER M A, et al. Surface Modification of Aircraft Used Composites for Adhesive Bonding [J]. International Journal of Adhesion and Adhesives, 2014, 50:157⁃63. |
70 | IQBAL H M S, BHOWMIK S, BENEDICTUS R. Surface Modification of High Performance Polymers by Atmospheric Pressure Plasma and Failure Mechanism of Adhesive Bonded Joints [J]. International Journal of Adhesion and Adhesives, 2010, 30(6): 418⁃424. |
71 | SILVA L F MDA, CARBAS R J C, CRITCHLOW G W, et al. Effect of Material, Geometry, Surface Treatment and Environment on The Shear Strength of Single Lap Joints [J]. International Journal of Adhesion and Adhesives, 2009, 29(6): 621⁃632. |
72 | XIE Y, YANG B, LU L, et al. Shear Strength of Bonded Joints of Carbon Fiber Reinforced Plastic (CFRP) Laminates Enhanced by A Two⁃Step Laser Surface Treatment [J]. Composite Structures, 2020, 232. |
73 | RAMíREZ F M G, MOURA M F S F, MOREIRA R D F, et al. A Review on The Environmental Degradation Effects on Fatigue Behaviour of Adhesively Bonded Joints [J]. Fatigue & Fracture of Engineering Materials & Structures, 2020, 43(7): 1 307⁃1 326. |
74 | S⁃MPARK, ROY R, J⁃HKWEON, et al. Strength and Failure Modes of Surface Treated CFRP Secondary Bonded Single⁃Lap Joints in Static and Fatigue Tensile Loading Regimes [J]. Composites Part A: Applied Science and Manufacturing, 2020, 134. |
75 | SHANG X, MARQUES E A S, MACHADO J J M, et al. Review on Techniques to Improve The Strength of Adhesive Joints with Composite Adherends [J]. Composites Part B: Engineering, 2019, 177. |
76 | LI Y, ZHAN X, GAO C, et al. Comparative Study of Infrared Laser Surface Treatment and Ultraviolet Laser Surface Treatment of CFRP Laminates [J]. The International Journal of Advanced Manufacturing Technology, 2019, 102(9⁃12): 4 059⁃4 071. |
77 | MOREIRA R D F, OLIVEIRA V, SILVA F G A, et al. Influence of Femtosecond Laser Treated Surfaces on The Mode I Fracture Toughness of Carbon⁃Epoxy Bon⁃ded Joints [J]. International Journal of Adhesion and Adh⁃esives, 2018, 82:108⁃113. |
78 | LEONE C, GENNA S. Effects of Surface Laser Treatment on Direct Co⁃Bonding Strength of CFRP Laminates [J]. Composite Structures, 2018, 194:240⁃251. |
79 | BUCHMANN C, LANGER S, FILSINGER J, et al. Analysis of The Removal of Peel Ply from CFRP Surfaces [J]. Composites Part B: Engineering, 2016, 89:352⁃361. |
80 | FISCHER F, KRELING S, JäSCHKE P, et al. Laser Surface Pre⁃Treatment of CFRP for Adhesive Bonding in Consideration of The Absorption Behaviour [J]. The Journal of Adhesion, 2012, 88(4⁃6): 350⁃363. |
81 | PALMIERI F L, BELCHER M A, WOHL C J, et al. Laser Ablation Surface Preparation for Adhesive Bonding of Carbon Fiber Reinforced Epoxy Composites [J]. International Journal of Adhesion and Adhesives, 2016, 68:95⁃101. |
82 | MOHAN J, RAMAMOORTHY A, IVANKOVIĆ A, et al. Effect of An Atmospheric Pressure Plasma Treatment on The Mode I Fracture Toughness of a Co⁃Cured Composite Joint [J]. The Journal of Adhesion, 2014, 90(9): 733⁃754. |
83 | BORSELLINO C, DI BELLA G, RUISI V F. Adhesive Joining of Aluminium AA6082: The Effects of Resin and Surface Treatment [J]. International Journal of Adhesion and Adhesives, 2009, 29(1): 36⁃44. |
84 | LI S, SUN T, LIU C, et al. A Study of Laser Surface Treatment in Bonded Repair of Composite Aircraft Structures [J]. R Soc Open Sci, 2018, 5(3). |
85 | HU P, HAN X, LI W D, et al. Research on The Static Strength Performance of Adhesive Single Lap Joints Subjected to Extreme Temperature Environment for Automotive Industry [J]. International Journal of Adhesion and Adhesives, 2013, 41:119⁃126. |
86 | BANEA M D, SILVA L F M D, CAMPILHO R D S G. Effect of Temperature on Tensile Strength and Mode I Fracture Toughness of A High Temperature Epoxy Adhesive [J]. Journal of Adhesion Science and Technology, 2012, 26(7): 939⁃953. |
87 | BANEA M D, DE SOUSA F S M, SILVA L F MDA, et al. Effects of Temperature and Loading Rate on the Mechanical Properties of A High Temperature Epoxy Adhesive [J]. Journal of Adhesion Science and Technology, 2012, 25(18): 2 461⁃2 474. |
88 | BANEA M D, SILVA L F MDA. Mechanical Characte⁃rization of Flexible Adhesives [J]. Journal of Adhesion, 2009, 85(4⁃5): 261⁃285. |
89 | REIS J M L, ANDRADE B, WATANABE M M, et al. Influence of Temperature on The Bending Stiffness and Tensile⁃Shear Strength of Composite–Metal Joints [J]. The Journal of Adhesion, 2018, 94(14): 1 122⁃1 136. |
90 | GRANT L D R, ADAMS R D, SILVA L F MDA. Effect of The Temperature on The Strength of Adhesively Bonded Single Lap and T Joints for The Automotive Industry [J]. International Journal of Adhesion and Adhesives, 2009, 29(5): 535⁃542. |
91 | URKMEZ TASKIN N, SAHIN A. Effect of Aging Time at High Temperature on The Shear Strength of Adhesively Bonded Aluminum Composite Foam Joints [J]. The Journal of Adhesion, 2018, 95(4): 308⁃324. |
92 | FERNANDES R L, DE MOURA M F S F, MOREIRA R D F. Effect of Temperature on Pure Modes I and II Fracture Behavior of Composite Bonded Joints [J]. Composites Part B: Engineering, 2016, 96:35⁃44. |
93 | CHARALAMBOUS G, ALLEGRI G, HALLETT S R. Temperature Effects on Mixed Mode I/II Delamination under Quasi⁃static and Fatigue Loading of A Carbon/Epoxy Composite [J]. Composites Part A: Applied Science and Manufacturing, 2015, 77:75⁃86. |
94 | CORONADO P, ARGüELLES A, VIñA J, et al. Influence of Temperature on A Carbon–Fibre Epoxy Compo⁃site Subjected to Static and Fatigue Loading under Mode⁃I Delamination [J]. International Journal of Solids and Structures, 2012, 49(21): 2 934⁃2 940. |
95 | BANEA M D, SILVA L F MDA, CAMPILHO R D S G. Mode II Fracture Toughness of Adhesively Bonded Joints as A Function of Temperature: Experimental and Numerical Study [J]. The Journal of Adhesion, 2012, 88(4⁃6): 534⁃551. |
96 | BANEA M D, SILVA L F MDA, CAMPILHO R D S G. Mode I Fracture Toughness of Adhesively Bonded Joints as A Function of Temperature: Experimental and Numerical study [J]. International Journal of Adhesion and Adhesives, 2011, 31(5): 273⁃279. |
97 | BANEA M D, SILVA L F MDA, CAMPILHO R D S G. Temperature Dependence of The Fracture Toughness of Adhesively Bonded Joints [J]. Journal of Adhesion Science and Technology, 2010, 24(11/12): 2 011⁃2 026. |
98 | NACHTANE M, TARFAOUI M, SASSI S, et al. An Investigation of Hygrothermal Aging Effects on High Strain Rate Behaviour of Adhesively Bonded Composite Joints [J]. Composites Part B: Engineering, 2019, 172:111⁃120. |
99 | VIANA G, COSTA M, BANEA M D, et al. Moisture and Temperature Degradation of Double Cantilever Beam Adhesive Joints [J]. Journal of Adhesion Science and Technology, 2017, 31(16): 1 824⁃1 838. |
100 | LIU S, CHENG X, ZHANG Q, et al. An Investigation of Hygrothermal Effects on Adhesive Materials and Double Lap Shear Joints of CFRP Composite Laminates [J]. Composites Part B: Engineering, 2016, 91:431⁃440. |
101 | STAZI F, GIAMPAOLI M, ROSSI M, et al. Environmental Ageing on GFRP Pultruded Joints: Comparison between Different Adhesives [J]. Composite Structures, 2015, 133:404⁃414. |
102 | ZHANG Y, ADAMS R D, SILVA L F M D. Absorption and Glass Transition Temperature of Adhesives Exposed to Water and Toluene [J]. International Journal of Adhesion and Adhesives, 2014, 50:85⁃92. |
103 | MOHAN J, IVANKOVIĆ A, MURPHY N. Mode I Fracture Toughness of Co⁃Cured and Secondary Bonded Composite Joints [J]. International Journal of Adhesion and Adhesives, 2014, 51:13⁃22. |
104 | CHAVES F J P, DE MOURA M F S F, SILVA L F MDA, et al. Fracture Characterization of Bonded Joints Using The Dual Actuator Load Apparatus [J]. Journal of Adhesion Science and Technology, 2013, 28(5): 512⁃524. |
105 | SUGITA Y, WINKELMANN C, SAPONARA VLA. Environmental and Chemical Degradation of Carbon/Epoxy Lap Joints for Aerospace Applications, and Effects on Their Mechanical Performance [J]. Compo⁃sites Science and Technology, 2010, 70(5): 829⁃839. |
106 | MOHAN J, IVANKOVIĆ A, MURPHY N. Effect of Prepreg Storage Humidity on The Mixed⁃Mode Fracture Toughness of A Co⁃Cured Composite Joint [J]. Composites Part A: Applied Science and Manufacturing, 2013, 45:23⁃34. |
107 | FERNANDES R L, DE MOURA M F S F, MOREIRA R D F. Effect of Moisture on Pure Mode I and II Fracture Behaviour of Composite Bonded Joints [J]. International Journal of Adhesion and Adhesives, 2016, 68:30⁃38. |
108 | ALESSI S, PITARRESI G, SPADARO G. Effect of Hydrothermal Ageing on The Thermal and Delamination Fracture Behaviour of CFRP Composites [J]. Composites Part B: Engineering, 2014, 67:145⁃153. |
109 | KATSIROPOULOS C V, CHAMOS A N, TSERPES K I, et al. Fracture Toughness and Shear Behavior of Composite Bonded Joints Based on A Novel Aerospace Adhesive [J]. Composites Part B: Engineering, 2012, 43(2): 240⁃248. |
110 | S⁃JBAEK, KIM M⁃S, AN W⁃J, et al. Defect Detection of Composite Adhesive Joints Using Electrical Resistance Method [J]. Composite Structures, 2019, 220:179⁃184. |
111 | 邱平. 碳纤维增强复合材料含缺陷胶接接头的强度与失效分析[D].杭州:浙江大学,2018. |
112 | 杨银环,周振功,郭颖,等. 缺陷对单搭胶接接头力学性能的影响[J].复合材料学报,2012,29(5):157⁃163. |
YANG Y H,ZHOU Z G,GUO Y, et al.Effect of Defects in The Adhesive Layer On Strength of Adhesively Bonded Single⁃Lap Composites Joints[J].Acta Materiae Compositae Sincia,2012, 29(5):157⁃163. | |
113 | 吴海,肖加余,邢素丽,等. 含诱导缺陷复合材料T型接头的弯曲失效实验[J].国防科技大学学报,2015, 37(4):128⁃136. |
WU H,XIAO J Y,XING S L,et al.The Failure Experiment of Composite T⁃Joints with Induced Defects under Bending Load[J].Journal of National University of Defense Technology, 2015, 37(4):128⁃136. | |
114 | GUO X, GUAN Z⁃D, NIE H⁃C, et al. Damage Tolerance Analysis of Adhesively Bonded Composite Single Lap Joints Containing a Debond Flaw [J]. The Journal of Adhesion, 2016, 93(3): 216⁃234. |
[1] | 于昌永, 辛忠. 基于六氢邻苯二甲酸盐的α/β复合成核剂对聚丙烯性能的影响[J]. 中国塑料, 2022, 36(7): 121-128. |
[2] | 冯冰涛, 王晓珂, 张信, 孙国华, 汪殿龙, 侯连龙, 马劲松. 连续碳纤维增强热塑性复合材料制备与应用研究进展[J]. 中国塑料, 2022, 36(7): 165-173. |
[3] | 谭立钦, 刘伟区, 梁利岩, 王硕, 冯志强, 林家明. 含巯基聚硅氧烷改性环氧树脂的制备及性能[J]. 中国塑料, 2022, 36(7): 21-29. |
[4] | 宋银宝, 杨建军, 李传敏. PDMS/SiC功能梯度复合材料性能与制造精度研究[J]. 中国塑料, 2022, 36(7): 30-36. |
[5] | 徐杰, 钟进福, 童晓茜, 李广富, 付栋梁, 李城城. 端羧基修饰单宁酸/没食子酸环氧树脂复合材料的制备与性能研究[J]. 中国塑料, 2022, 36(7): 44-50. |
[6] | 李凯泽, 辛勇. 改性碳纳米管增强热塑性聚氨酯复合材料的性能研究[J]. 中国塑料, 2022, 36(6): 1-5. |
[7] | 杨小龙, 陈文静, 李永青, 闫晓堃, 王修磊, 谢鹏程, 马秀清. 导电型聚合物/石墨烯复合材料的研究进展[J]. 中国塑料, 2022, 36(6): 165-173. |
[8] | 王帅, 张玉迪, 杨富凯, 徐新宇. 聚酰亚胺/多壁碳纳米管泡沫材料的制备及性能研究[J]. 中国塑料, 2022, 36(6): 39-45. |
[9] | 王金业, 唐博虎, 杨立宁, 谢猛, 郭泽朝, 杨光. PA12试件多射流熔融成型工艺研究[J]. 中国塑料, 2022, 36(6): 81-86. |
[10] | 孙文博, 信春玲, 何亚东, 翟玉娇, 闫宝瑞. 玻璃纤维增强PBT微发泡工艺对其制品泡孔结构的影响[J]. 中国塑料, 2022, 36(5): 1-7. |
[11] | 王轲, 龙春光. PE⁃UHMW/海泡石纤维复合材料的力学性能与摩擦学性能研究[J]. 中国塑料, 2022, 36(5): 19-23. |
[12] | 陈胜, 梁颖超, 吴方娟, 方辉, 范新凤, 陈晖, 王永刚. 聚酰胺6/双向经编玻璃纤维复合材料的制备及其界面改性研究[J]. 中国塑料, 2022, 36(5): 24-28. |
[13] | 何和智, 徐力, 杨以科. 预应力对PC/CF层合板力学性能的影响[J]. 中国塑料, 2022, 36(4): 1-5. |
[14] | 万翼, 李莉, 菊春燕, 郝雪纯, 李润. 乌鲁木齐市塑料垃圾年产量预测及影响因素分析[J]. 中国塑料, 2022, 36(4): 121-127. |
[15] | 刘文, 师文钊, 刘瑾姝, 陆少锋, 周红娟. 电致形状记忆复合材料研究进展[J]. 中国塑料, 2022, 36(4): 175-189. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||