
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2022, Vol. 36 ›› Issue (11): 84-93.DOI: 10.19491/j.issn.1001-9278.2022.11.013
收稿日期:
2022-09-02
出版日期:
2022-11-26
发布日期:
2022-11-25
通讯作者:
徐双平(1979—),男,副教授,从事气体分离膜研究,xshp_1979_1999@163.com基金资助:
ZHAO Wenwen1, XU Shuangping1(), JIA Hongge1, WANG Xing2, XU Jingyu2
Received:
2022-09-02
Online:
2022-11-26
Published:
2022-11-25
Contact:
XU Shuangping
E-mail:xshp_1979_1999@163.com
摘要:
综述了超支化聚合物气体分离膜材料的研究进展,介绍了不同种类的超支化聚合物,阐述了传统结构超支化聚合物与大π共轭结构超支化聚合物的等超支化聚合物的合成,详细介绍了偶氮类超支化聚合物、聚酰胺类超支化聚合物及共混类超支化聚合物在分离膜制备中的作用,并对超支化聚合物在气体分离膜领域未来的研究方向进行了展望。
中图分类号:
赵雯雯, 徐双平, 贾宏葛, 王兴, 徐靖宇. 超支化聚合物气体分离膜材料的研究进展[J]. 中国塑料, 2022, 36(11): 84-93.
ZHAO Wenwen, XU Shuangping, JIA Hongge, WANG Xing, XU Jingyu. Research progress in gas⁃separation membrane materials of hyperbranched polymer[J]. China Plastics, 2022, 36(11): 84-93.
1 | Geng C, Sun Y, Zhang Z, et al. Mitigated aging in a defective metal⁃organic framework pillared polymer of an intrinsic porosity hybrid membrane for efficient gas separation[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(11): 3 643⁃3 650. |
2 | Widakdo J, Chiao Y H, Lai Y L, et al. Mechanism of a self⁃assembling smart and electrically responsive PVDF⁃graphene membrane for controlled gas separation[J]. ACS applied materials & interfaces, 2020, 12(27): 30 915⁃30 924. |
3 | Chakrabarty T, Giri A K, Sarkar S. Mixed‐matrix gas separation membranes for sustainable future: A mini review[J]. Polymers for Advanced Technologies, 2022, 33(6): 1 747⁃1 761. |
4 | Yang R, Chen M Y, Li P. Carbon molecular sieve hollow fiber composite membrane derived from PMDA⁃ODA polyi⁃mide for gas separation[J]. High Performance Polymers, 2022, 34(4): 444⁃454. |
5 | Hou R, Smith S J D, Konstas K, et al. Synergistically improved PIM⁃1 membrane gas separation performance by PAF⁃1 incorporation and UV irradiation[J]. Journal of Materials Chemistry A, 2022, 10(18): 10 107⁃10 119. |
6 | Zhao Y, Zhou C, Kong C, et al. Ultrathin reduced graphene oxide/organosilica hybrid membrane for gas separation[J]. JACS Au, 2021, 1(3): 328⁃335. |
7 | Chen M, Yang R, Li P. Preparation of defect⁃free hollow fiber membranes derived from PMDA⁃ODA polyimide for gas separation[J]. Chemical Engineering Research and Design, 2022, 179: 154⁃161. |
8 | Wang J, Zhou M, Lu D, et al. Virtual screening of nanoporous materials for noble gas separation[J]. ACS Applied Nano Materials, 2022, 5(3): 3 701⁃3 711. |
9 | Fakoori M, Azdarpour A, Abedini R, et al. Effect of Cu⁃MOFs incorporation on gas separation of Pebax thin film nanocomposite (TFN) membrane[J]. Korean Journal of Chemical Engineering, 2021, 38(1): 121⁃128. |
10 | Xin Q, Zhao M, Guo J, et al. Light⁃responsive metal⁃organic framework sheets constructed smart membranes with tunable transport channels for efficient gas separation[J]. RSC advances, 2022, 12(1): 517⁃527. |
11 | Memon F H, Rehman F, Lee J, et al. Transition metal dichalcogenide⁃based membranes for water desalination, gas separation, and energy storage[J]. Separation & Purification Reviews, 2022: 1⁃15. |
12 | Bi X, Zhang Y, Zhang F, et al. MOF nanosheet⁃based mixed matrix membranes with metal⁃organic coordination interfacial interaction for gas separation[J]. ACS Applied Materials & Interfaces, 2020, 12(43): 49 101⁃49 110. |
13 | Jiang S, Shi X, Sun F, et al. Fabrication of crystalline microporous membrane from 2D MOF nanosheets for gas separation[J]. Chemistry⁃An Asian Journal, 2020, 15(15): 2 371⁃2 378. |
14 | Nie J, Yoshizawa N, Tanaka K. Effect of chemical vapor deposition of toluene on gas separation performance of carbon molecular sieve membranes[J]. Journal of Porous Materials, 2022, 29(2): 393⁃404. |
15 | Ashtiani S, Khoshnamvand M, Číhal P, et al. Fabrication of a PVDF membrane with tailored morphology and properties via exploring and computing its ternary phase dia⁃gram for wastewater treatment and gas separation applications[J]. RSC advances, 2020, 10(66): 40 373⁃40 383. |
16 | Lv X, Li D, Ma Y, et al. From gas separation to ion transport in the cavity of hyperbranched polyamides based on triptycene aimed for electrochromic and memory devices[J]. Polymer Chemistry, 2022, 13(6): 808⁃818. |
17 | Zhao M, Ban Y, Yang K, et al. A highly selective supramolecule array membrane made of zero‐dimensional molecules for gas separation[J]. Angewandte Chemie, 2021, 133(38): 21 145⁃21 151. |
18 | Farha O K, Spokoyny A M, Hauser B G, et al. Synthesis, Properties, and Gas Separation Studies of a Robust Diimide⁃Based Microporous Organic Polymer[J]. Chemi⁃stry of Materials, 2009, 21(14):3 033⁃3 035. |
19 | Liou G S, Lin H Y, Yen H J. Synthesis and characterization of electroactive hyperbranched aromatic polyamides based on A2B⁃type triphenylamine moieties[J]. Joural of Materials Chemistry, 2009, 19(41): 7 666⁃7 673. |
20 | Vanjinathan M, Shanavas A, Nasar A S, et al. Synthesis and properties of hyperbranched polyurethanes, hyperbranched polyurethane copolymers with and without ether and ester groups using blocked ssocyanate monomers[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2007, 45(17): 3 877⁃3 893. |
21 | Kim Y H, Webster O W. Hyperbranched polyphenylenes[J]. Macromolecules, 1992, 25(21): 5 561⁃5 572. |
22 | Kushakova N S, Shapovalov A V, Rud D A, et al. Synthesis of hyperbranched polyphenylenes by suzuki reaction and their spectral characteristics[J]. Polymer Science Series B, 2008, 51(9/10): 409⁃415. |
23 | Wen G A, Xin Y, Peng B, et al. Hyperbranched triazine⁃containing polyfluorenes: Efficient blue emitters for polymer light⁃emitting diodes (PLEDs)[J]. Polymer, 2007, 48(7): 1 824⁃1 829. |
24 | Zhu B, Han Y, Sun M H, et al. Water⁃soluble dendronized polyfluorenes with an extremely high quantum yield in water[J]. Macromolecules, 2007, 40(13): 4 494⁃4 450. |
25 | Yu M H, Liu L B, Wang S. Water⁃soluble dendritic⁃conjugated polyfluorenes: Synthesis, characterization, and interactions with DNA[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2008, 46(22): 7 462⁃7 472. |
26 | Malenfant P R L, Fréchet J M J. Dendrimers as solubili⁃zing groups for conducting polymers: Preparation and chara⁃cterization of polythiophene functionalized exclusively with aliphatic ether convergent dendrons[J]. Macromolecules, 2000, 33(10): 3 634⁃3 640. |
27 | Zhao Hongyong, Qian Xie, Ding Xiaoli, et al. High performance post⁃modified polymers of intrinsic microporosity (PIM⁃1) membranes based on multivalent metal ions for gas separation[J]. Journal of Membrane Science, 2016, 514: 305⁃312. |
28 | Patel Hasmukh A, Sang Hyun Je, Joonho Park, et al. Unprecedented high⁃temperature CO2 selectivity in N2⁃phobic nanoporous covalent organic polymers[J]. Nature Communications, 2013, 4(1):1⁃8. |
29 | Cheng Liu, Li Yuemin, Zhang Manxia, et al. Hierarchical porous organic hyper⁃cross⁃linked polymers containing phthalazinone and carbazole moieties for gas uptake and fluorescence properties[J]. European Polymer Journal, 2020, 130:109674. |
30 | Wang J, Xiong S, Tao J, et al. An azo⁃bridged polymer of intrinsic microporosity modified poly(phthalazinone ether sulfone ketone) membrane for efficient O2/N2 separation[J]. Separation and Purification Technology, 2020, 248:117044. |
31 | Huang L, Guo W, Mondal H, et al. Effect of branch length on the structural and separation properties of hyperbranched poly(1, 3⁃dioxolane)[J]. Macromolecules, 2021, 55(1): 382⁃389. |
32 | Zhang G, Tran T N, Huang L, et al. Thin⁃film composite membranes based on hyperbranched poly(ethylene oxide) for CO2/N2 separation[J]. Journal of Membrane Science, 2022, 644: 120184. |
33 | Liang Xu, Lei Tianyang, Jing Boyu, et al. Synthesis of soluble oligsiloxane⁃end⁃capped hyperbranched polyazomethine and their application to CO2/N2 separation membranes[J]. Designed Monomers & Polymers, 2018, 21(1): 99⁃104. |
34 | Deng G, Luo J, Liu S, et al. Low⁃temperature synthesis and gas transport properties of novel contorted hyperbranched polyimides containing binaphthyl structures[J]. Separation and Purification Technology, 2020, 248: 117088. |
35 | Fang J, Kita H, Okamoto K I. Gas permeation properties of hyperbranched polyimide membranes[J]. Journal of Membrane science, 2001, 182(1/2):245⁃256. |
36 | Peter J, Khalyavina A, Kríz J, et al. Synthesis and gas transport properties of ODPA⁃TAP⁃ODA hyperbranched polyimides with various comonomer ratios[J]. European Polymer Journal, 2009, 45(6):1 716⁃1 727. |
37 | 刘善友. (A_2+B_4)型超支化聚酰亚胺的分子设计及性能研究[D]. 吉林:吉林大学, 2016.. |
38 | ZHANG L, MA T. Progress of membrane preparation usging hyperbranched polymers as key materials[J].China Sciencepaper,2018,13(24):2 747⁃2 753. |
39 | Song N, Ma T, Wang T, et al. Crosslinked microporous polyimides with polar substituent group for efficient CO2 capture[J]. Microporous and Mesoporous Materials, 2020, 293:109809. |
40 | 袁晓旭. 超支化聚酰亚胺的合成与气体分离性能研究[D].天津:天津理工大学 2019. |
41 | Liu S, Luo J, Deng G, et al. From a hyperbranched polyi⁃mide to a microporous network polyimide via reaction temperature change and its application in gas separation membranes[J]. Polymers for Advanced Technologies, 2021, 32(4): 1 866⁃1 876. |
42 | Marek Lanč, Petr Sysel, Marek Šoltys, et al. Synthesis, preparation and characterization of novel hyperbranched 6FDA⁃TTM based polyimide membranes for effective CO2 separation: effect of embedded mesoporous silica particles and siloxane linkages[J]. Polymer, 2018, 144: 33⁃42. |
43 | Yang T, Pang H, Chen Z, et al. Synthesis and enhanced CO2/CH4 selectivity of hyperbranched copolyimide membranes[J]. High Performance Polymers, 2021, 33(6): 675⁃684. |
44 | Suzuki T, Miki M, Yamada Y. Gas transport properties of hyperbranched polyimide/hydroxy polyimide blend membranes[J]. European Polymer Journal, 2012, 8(8): 1 504⁃1 512. |
45 | Suzuki T, Yamada Y. Effect of thermal treatment on gas transport properties of hyperbranched polyimide⁃silica hybrid membranes[J]. Journal of Membrane Science, 2012, 417/418: 193⁃200. |
46 | Suzuki T, Takenaka M, Yamada Y. Synthesis and gas transport properties of hyperbranched polybenzoxazole⁃silica hybrid membranes[J]. Journal of Membrane Scien⁃ce, 2017, 521:10⁃17. |
47 | Shen Y, Wang H, Liu J D, et al. Enhanced performance of a novel polyvinyl amine/chitosan/graphene oxide mixed matrix membrane for CO2 capture[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(8):1 819⁃1 829. |
48 | Dong G, Zhang Y, Hou J, et al. Graphene oxide nanosheets based novel facilitated transport membranes for efficient CO2 capture[J]. Industrial & Engineering Chemi⁃stry Research, 2016, 55(18): 5 403⁃5 414. |
49 | Sim Y H, Wang H, Li F Y, et al. High performance carbon molecular sieve membranes derived from hyperbranched polyimide precursors for improved gas separation applications[J]. Carbon, 2013, 53: 101⁃111. |
50 | Gao Y, Qiao Z, Zhao S, et al. In situ synthesis of polymer grafted ZIFs and application in mixed matrix membrane for CO2 separation[J]. Journal of Materials Chemistry A, 2018, 6(7): 3 151⁃3 161. |
51 | Fakhar A, Dinari M, Lammertink R, et al. Enhanced CO2 capture through bulky poly (urethane⁃urea)⁃based MMMs containing hyperbranched triazine based silica nanoparticles[J]. Separation and Purification Technology, 2020, 241: 116734. |
[1] | 杨岩, 王杰, 李宗育, 王懿明, 王运楠, 黎水娟, 雷良才, 李海英. 超支化离子液体聚合物合成方法综述[J]. 中国塑料, 2022, 36(8): 159-165. |
[2] | 于昌永, 辛忠. 基于六氢邻苯二甲酸盐的α/β复合成核剂对聚丙烯性能的影响[J]. 中国塑料, 2022, 36(7): 121-128. |
[3] | 冯凯, 李永青, 马秀清, 韩颖. 聚甲醛增韧改性的研究进展及应用[J]. 中国塑料, 2022, 36(7): 157-164. |
[4] | 祝景云, 衣惠君, 鄢薇, 李大伟. 合成膜专用聚乙烯树脂原料的研发[J]. 中国塑料, 2022, 36(6): 77-80. |
[5] | 冯秀, 沈颖, 许胜. 五价有机铋的合成及其在聚氨酯中的应用[J]. 中国塑料, 2022, 36(5): 104-109. |
[6] | 孙旗, 高兴, 崔雪梅, 连慧琴, 崔秀国, 汪晓东. 黑磷烯纳米阻燃剂研究进展[J]. 中国塑料, 2022, 36(5): 133-139. |
[7] | 陈文静, 杨小龙, 韩顺涛, 韩颖, 马秀清. 聚丙烯腈材料改性方法及研究进展[J]. 中国塑料, 2022, 36(4): 158-165. |
[8] | 蒋森, 王立岩, 陈延明, 张乐, 翟桂法. MPO改性PBS共聚酯的合成及其热性能研究[J]. 中国塑料, 2022, 36(4): 24-29. |
[9] | 李京霖, 郑义, 赵丽雅, 王攀, 杨鑫玉, 任连海. 厨余垃圾生物合成聚羟基脂肪酸酯研究进展[J]. 中国塑料, 2022, 36(3): 110-119. |
[10] | 曲岩松. “十四五”期间中国合成树脂工业的机遇和挑战[J]. 中国塑料, 2022, 36(3): 140-145. |
[11] | 杨钦杰, 李佳汶, 李明, 陈刚, 李光照, 彭必友, 韩锐. 熔融沉积3D打印设备研究进展[J]. 中国塑料, 2022, 36(2): 157-171. |
[12] | 余正发, 展悦, 崔永岩. 新型硅硼磷阻燃剂的合成以及在防火涂料中的应用[J]. 中国塑料, 2022, 36(10): 117-124. |
[13] | 臧晓玲, 温变英. 高分子材料绿色制造与可持续发展[J]. 中国塑料, 2021, 35(8): 9-20. |
[14] | 吴悠, 王博华, 孙健健, 靳玉娟. 端环氧基型超支化聚合物对PPC/PBS共混物的改性研究[J]. 中国塑料, 2021, 35(4): 5-11. |
[15] | 黄旭博, 柳召刚, 赵金钢, 杨羽轩, 陈明光, 吴锦绣, 胡艳宏, 冯福山. 2⁃苯甲酰苯甲酸镧对PVC热稳定作用的影响[J]. 中国塑料, 2021, 35(12): 94-101. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||