
《中国塑料》编辑部 ©2008-2024 版权所有
地址:北京市海淀区阜成路11号 邮编:100048
编辑部:010-68985541 联系信箱:cp@plaschina.com.cn
广告部/发行部:010-68985253 本系统由北京玛格泰克科技发展有限公司设计开发
中国塑料 ›› 2023, Vol. 37 ›› Issue (2): 7-14.DOI: 10.19491/j.issn.1001-9278.2023.02.002
王泽辉1(), 王振军1,2(
), 王笑风3, 杨博3, 李帅3
收稿日期:
2022-11-14
出版日期:
2023-02-26
发布日期:
2023-02-22
通讯作者:
王振军(1978—),男,教授,从事高分子聚合物材料研究,zjwang@chd.edu.cn作者简介:
王泽辉(1997—),男,在读硕士研究生,从事聚氨酯材料研究,1027621956@qq.com
基金资助:
WANG Zehui1(), WANG Zhenjun1,2(
), WANG Xiaofeng3, YANG Bo3, LI Shuai3
Received:
2022-11-14
Online:
2023-02-26
Published:
2023-02-22
Contact:
WANG Zhenjun
E-mail:1027621956@qq.com;zjwang@chd.edu.cn
摘要:
为探究原材料对聚氨酯注浆料(PGMs)抗压强度的影响,以聚酯多元醇(聚醚多元醇)和异氰酸酯(PM200)为主要原料,表面活性剂、催化剂、交联剂和发泡剂为助剂,制备了不含溶剂的环保型PGMs,并利用傅里叶变换红外光谱仪(FTIR)、扫描电子显微镜(SEM)等对PGMs的官能团、泡孔结构、抗压强度等进行了表征和测试。结果表明,加入10 %(质量分数,下同)掺量的聚酯多元醇可以增加体系中苯环的含量,使PGMs的抗压强度提升到1.09 MPa。原材料以多元醇质量为基础单位进行计算,确定PGMs的最佳配比为聚醚多元醇90份、聚酯多元醇10份、三乙烯二胺(Dabco33lv)0.6份、二月桂酸二丁基锡(SDJ 9902)0.6份、表面活性剂2.0份、三乙醇胺(TEOA)4.0份、水2.5份、发泡剂一氟二氯乙烷(HCFC⁃141b)9份。
中图分类号:
王泽辉, 王振军, 王笑风, 杨博, 李帅. 配方组成对聚氨酯注浆材料抗压强度影响的研究[J]. 中国塑料, 2023, 37(2): 7-14.
WANG Zehui, WANG Zhenjun, WANG Xiaofeng, YANG Bo, LI Shuai. Effect of formula compositions on compressive strength of polyurethane grouting materials[J]. China Plastics, 2023, 37(2): 7-14.
多元醇 | 羟值/mg KOH·g-1 | 官能度 | 黏度/mPa·s·(25 ℃-1) | 水分/ % | pH值 |
---|---|---|---|---|---|
YHY4110 | 440±30 | 4~4.5 | 3 000±500 | ≤0.10 | 9±3 |
PS⁃3152 | 280.5 | 2 | 2 000±1 000 | ≤0.15 | 10±1 |
多元醇 | 羟值/mg KOH·g-1 | 官能度 | 黏度/mPa·s·(25 ℃-1) | 水分/ % | pH值 |
---|---|---|---|---|---|
YHY4110 | 440±30 | 4~4.5 | 3 000±500 | ≤0.10 | 9±3 |
PS⁃3152 | 280.5 | 2 | 2 000±1 000 | ≤0.15 | 10±1 |
组别 | 水/% | HCFC⁃141b/% | 抗压强度/MPa |
---|---|---|---|
W⁃1 | 0.5 | 6 | — |
W⁃2 | 1.5 | 6 | 1.09 |
W⁃3 | 2.5 | 6 | 1.03 |
W⁃4 | 3.5 | 6 | 0.63 |
H⁃1 | 1.5 | 3 | 0.87 |
H⁃2 | 1.5 | 6 | 1.09 |
H⁃3 | 1.5 | 9 | 1.11 |
H⁃4 | 1.5 | 12 | 1.00 |
组别 | 水/% | HCFC⁃141b/% | 抗压强度/MPa |
---|---|---|---|
W⁃1 | 0.5 | 6 | — |
W⁃2 | 1.5 | 6 | 1.09 |
W⁃3 | 2.5 | 6 | 1.03 |
W⁃4 | 3.5 | 6 | 0.63 |
H⁃1 | 1.5 | 3 | 0.87 |
H⁃2 | 1.5 | 6 | 1.09 |
H⁃3 | 1.5 | 9 | 1.11 |
H⁃4 | 1.5 | 12 | 1.00 |
1 | LIN Z, GUO C, CAO D, et al. An experimental study on the cutting failure of polymer grouting[J]. Construction and Building Materials, 2020, 258: 119582. |
2 | LI J, ZHANG J, CHEN S. Study on dynamic viscoelastic properties and constitutive model of non⁃water reacted polyu⁃rethane grouting materials[J]. Measurement, 2021, 176(8): 109115. |
3 | SHI Z, YUE J, XU L, et al. Peridynamics for fracture analysis of reflective cracks in semi⁃rigid base asphalt pavement[J]. Applied Sciences⁃Basel, 2022, 12(7): 3486. |
4 | THIVES L P, PAIS J C, PEREIRA P A, et al. Performance of asphalt rubber mixture overlays to mitigate reflective cracking[J]. Materials, 2022, 15(7): 2375. |
5 | DEILAMI S, WHITE G. Review of reflective cracking in composite pavements[J]. International Journal of Pavement Research and Technology, 2020, 13(5): 524⁃535. |
6 | FANG H, LI B, WANG F, et al. The mechanical behaviour of drainage pipeline under traffic load before and after polymer grouting trenchless repairing[J]. Tunnelling and Underground Space Technology, 2018, 74: 185⁃194. |
7 | WANG Z, DU M, FANG H, et al. Influence of different corrosion environments on mechanical properties of a roadbed rehabilitation polyurethane grouting material under uniaxial compression[J]. Construction and Building Materials, 2021, 301: 124092. |
8 | PARUZEL A, MICHA OWSKI S, HODAN J, et al. Rigid polyurethane foam fabrication using medium chain glycerides of coconut oil and plastics from end⁃of⁃life vehicles[J]. ACS Sustainable Chemistry & Engineering, 2017, 15(7): 6 237⁃6 246. |
9 | KURAŃSKA M, PINTO J, SALACH K, et al. Synthesis of thermal insulating polyurethane foams from lignin and rapeseed based polyols: A comparative study[J]. Industrial Crops and Products, 2020, 143: 111882. |
10 | LIU X, WANG J, HUANG K, et al. Experimental study on the properties of water⁃soluble polyurethane modi⁃fied by cellulose[J]. New Building Materials, 2018, 23(9): 3 897⁃3 906. |
11 | PROCIAK A, KURAŃSKA M, CABULIS U, et al. Effect of bio⁃polyols with different chemical structures on foaming of polyurethane systems and foam properties[J]. Industrial Crops and Products, 2018, 120: 262⁃270. |
12 | 周晓谦, 刘英楠, 王妍, 等. 各因素对聚氨酯硬质泡沫塑料垂直燃烧性能的影响研究[J]. 中国塑料, 2012, 1: 77⁃81. |
ZHOU X Q, LIU Y N, WANG Y, et al. Influence of various factors on vertical combustibility of polyurethane rigid foam[J]. China Plastics, 2012, 1: 77⁃81. | |
13 | PIERRE F, LUC A, et al. Renewable polyols for advanced polyurethane foams from diverse biomass resources[J]. Polymer Chemistry, 2018, 9(32): 4 258⁃4 287. |
14 | SALEH S, YUNUS N Z M, AHMAD K, et al. Improving the strength of weak soil using polyurethane grouts: A review[J]. Construction and Building Materials, 2019, 202: 738⁃752. |
15 | PEYRTON J, AVROUS L. Structure⁃properties relationships of cellular materials from biobased polyurethane foams[J]. Materials Science and Engineering Reports, 2021, 145(11): 100608. |
16 | MAHMOOD N, YUAN Z, SCHMIDT J, et al. Depolymerization of lignins and their applications for the preparation of polyols and rigid polyurethane foams: A review[J]. Renewable and Sustainable Energy Reviews, 2016, 60: 317⁃329. |
17 | BEDNAREK M. Branched aliphatic polyesters by ring⁃opening(co)polymerization[J]. Progress in Polymer Science, 2016, 58: 27⁃58. |
18 | SIENKIEWICZ N, STRĄKOWSKA A, STRZELEC K, et al. Keratin feathers as a filler for rigid polyurethane foams on the basis of soybean oil polyol[J]. Polymer Testing, 2018, 72: 32⁃45. |
19 | STIRNA U, BEVERTE I, YAKUSHIN V, et al. Mechanical properties of rigid polyurethane foams at room and cryogenic temperatures[J]. Journal of Cellular Plastics, 2011, 47(4): 337⁃355. |
20 | TIAN H, YAO Y, YIN D, et al. Effect of dibutyltin dilaurate and triethanolamine catalysts on structure and proper⁃ties of polyimide foams[J]. Journal of Vinyl and Additive Technology, 2019, 25(4): 385⁃395. |
21 | HATCHETT D, KODIPPILI G, KINYANJUI J, et al. FTIR analysis of thermally processed PU foam[J]. Polymer Degradation & Stability, 2005, 87(3): 555⁃561. |
22 | 张书诚, 唐文斌, 于天娇, 等. 不同含量配比制备聚氨酯泡沫及其性能研究[J]. 中国塑料, 2022, 36(3): 104⁃109. |
ZHANG S C, TANG W B, YU T J, et al. Preparation and properties of polyurethane foams with different contents of polyether polyol[J]. China Plastics, 2022, 36(3): 104⁃109. | |
23 | SEPTEVANI A A, EVANS D, CHALEAT C, et al. A systematic study substituting polyether polyol with palm kernel oil based polyester polyol in rigid polyurethane foam[J]. Industrial Crops and Products, 2015, 66: 16⁃26. |
24 | URAM K, PROCIAK A, KURAŃSKA M. Influence of the chemical structure of rapeseed oil⁃based polyols on selected properties of polyurethane foams[J]. Polimery, 2020, 65(10): 698⁃707. |
25 | BRONDI C, DI MAIO E, BERTUCELLI L, et al. Competing bubble formation mechanisms in rigid polyurethane foaming[J]. Polymer, 2021, 228: 123877. |
26 | CAMPANELLA A, BONNAILLIE L, WOOL R. Polyurethane foams from soyoil‐based polyols[J]. Journal of Applied Polymer Science, 2009, 112(4): 2 567⁃2 578. |
27 | BANIK I, SAIN M M. Water blown soy polyol⁃based polyurethane foams of different rigidities[J]. Journal of Reinforced Plastics and Composites, 2008, 27(4): 357⁃373. |
28 | 高翔, 黄卫, 魏亚, 等. 聚氨酯高聚物注浆材料抗压强度测试与模拟[J]. 复合材料学报, 2017, 34(2): 438⁃445. |
GAO X, HUANG W, Wei Y, et al. Experiment and mode⁃ling for compressive strength of polyurethane grout materials[J]. Journal of Composites, 2017, 34(2): 438⁃445. | |
29 | BOSE M, DHALIWAL G, CHANDRASHEKHARA K, et al. Role of additives in fabrication of soy⁃based rigid polyurethane foam for structural and thermal insulation applications[J]. Journal of Applied Polymer Science, 2021, 138(45): 51325. |
30 | CHOE H, CHOI Y, KIM J H. Threshold cell diameter for high thermal insulation of water⁃blown rigid polyurethane foams[J]. Journal of Industrial and Engineering Chemistry, 2019, 73: 344⁃350. |
31 | Furtwengler Pierre, Matadi⁃Boumbimba Rodrigue, Sarbu Alexandru, et al. Novel rigid polyisocyanurate foams from synthesized biobased polyester polyol with enhanced properties[J]. ACS Sustainable Chemistry and Engineering, 2018, 16(5): 6 577⁃6 589. |
32 | VOORHEES P W. The theory of Ostwald ripening[J]. Journal of Statistical Physics, 1985, 38(1): 231⁃252. |
33 | SANTIAGO‐CALVO M, BLASCO V, RUIZ C, et al. Improvement of thermal and mechanical properties by control of formulations in rigid polyurethane foams from polyo⁃ls functionalized with graphene oxide[J]. Journal of App⁃lied Polymer Science, 2019, 136(19): 47474. |
34 | Elif Kabakci, Goksin Sayer, Ender Suvaci, et al. Processing⁃structure⁃property relationship in rigid polyurethane foams[J]. Journal of Applied Polymer Science, 2017, 134(21): 44870. |
35 | SEO W J, JUNG H C, HYUN J C, et al. Mechanical, morphological, and thermal properties of rigid polyurethane foams blown by distilled water[J]. Journal of App⁃lied Polymer Science, 2003, 90(1): 12⁃21. |
36 | 王雪琳, 崔晓晓, 韩望, 等. 三乙醇胺改性沙柳液化产物/异氰酸酯硬质泡沫材料研究[J]. 林业工程学报, 2022, 7(1): 137⁃144. |
WANG X L, CUI X X, HAN W, et al. Study on triethanolamine modified salix liquefaction/isocyanate rigid foam[J]. Journal of Forestry Engineering, 2022, 7(1): 137⁃144. | |
37 | LUO Y, ZOU J, LI J, et al. Effect of crosslinking agent on properties and morphology of water⁃blown semirigid polyurethane foam[J]. Journal of Applied Polymer Science, 2018, 135(42): 46753. |
38 | MODESTI M, DALL’ACQUA C, LORENZETTI A, et al. Mathematical model and experimental validation of water cluster influence upon vapour permeation through hydrophilic dense membrane[J]. Journal of Membrane Science, 2004, 229(1/2): 211⁃223. |
[1] | 孙文博, 信春玲, 何亚东, 翟玉娇, 闫宝瑞. 玻璃纤维增强PBT微发泡工艺对其制品泡孔结构的影响[J]. 中国塑料, 2022, 36(5): 1-7. |
[2] | 李素圆, 刘会鹏, 龚舜, 黄国桃, 李玉才, 吴鑫, 邓建平, 潘凯. 热塑性聚酰胺弹性体改性EVA复合发泡材料的制备及性能表征[J]. 中国塑料, 2022, 36(4): 6-14. |
[3] | 张书诚, 唐文斌, 于天娇, 徐珍珍, 邢剑. 不同含量配比制备聚氨酯泡沫及其性能研究[J]. 中国塑料, 2022, 36(3): 104-109. |
[4] | 翟玉娇, 信春玲, 何亚东, 闫宝瑞, 乔林军. 聚丙烯/超临界氮气微孔注塑充模过程工艺参数研究[J]. 中国塑料, 2022, 36(3): 69-74. |
[5] | 黄健伟. 固化温度对缓凝黏合剂固化时间和强度的影响[J]. 中国塑料, 2022, 36(10): 65-70. |
[6] | 杨金, 陈鹏然, 高培鑫. 可常温发泡的轻质高强环氧树脂泡沫的制备及性能研究[J]. 中国塑料, 2022, 36(10): 7-14. |
[7] | 张一辉, 陈士宏, 王从龙, 王向东. 聚醚酰亚胺均相成核发泡行为研究[J]. 中国塑料, 2021, 35(5): 65-71. |
[8] | 徐云飞, 赵在胜, 邢雅静, 蒋晶. 聚乳酸/聚氨酯复合多孔材料制备及吸油性能研究[J]. 中国塑料, 2021, 35(11): 24-31. |
[9] | 李金禹, 戴亚杰, 陈宇, 孙同兵. 聚酯类增塑剂的合成与应用研究进展[J]. 中国塑料, 2020, 34(7): 109-117. |
[10] | 袁洪跃, 金章勇, 蒋晶, 刘宪虎, 赵振峰. 聚丙烯/碳纳米管微孔注塑发泡行为及力学性能[J]. 中国塑料, 2020, 34(6): 20-26. |
[11] | 高东明, 王向东, 胡晶, 李杰. 基于3D打印的泡孔空间点阵对力学性能的影响[J]. 中国塑料, 2017, 31(05): 65-70 . |
[12] | 索倩倩, 乔辉, 张亚雄, 史翎. 聚丁烯异相成核发泡行为的研究[J]. 中国塑料, 2016, 30(06): 7-12 . |
[13] | 李珊珊, 何继敏, 颜克福, 金晓明, 龙洪生. 聚乳酸扩链改性及其挤出发泡的研究[J]. 中国塑料, 2015, 29(04): 24-29 . |
[14] | 王鹄, 马秀清. 成核剂对聚丙烯釜压发泡的影响[J]. 中国塑料, 2015, 29(03): 75-78 . |
[15] | 付会娟 余成科 罗建勋 毛立新 张立群. 扩链剂与交联剂对NDI型聚氨酯弹性体性能的影响[J]. 中国塑料, 2012, 26(10): 31-35 . |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||