中国塑料 ›› 2024, Vol. 38 ›› Issue (11): 47-52.DOI: 10.19491/j.issn.1001-9278.2024.11.008

• 材料与性能 • 上一篇    下一篇

聚酰亚胺/羟乙基纤维素复合纤维膜的制备及其电池性能研究

胡家嫒, 张怡晴, 许佳贺, 李巧丽, 冯茜茜(), 徐轩, 李新傲, 倪天恒, 侯连龙, 马海坤, 孙国华()   

  1. 河北科技大学材料科学与工程学院,河北省柔性功能材料重点实验室,石家庄 050018
  • 收稿日期:2024-04-02 出版日期:2024-11-26 发布日期:2024-11-21
  • 通讯作者: 冯茜茜(1999—),女,硕士研究生,从事锂电池纳米纤维隔膜等研究,fengxixi8023@163.com
    孙国华(1988—),男,讲师,从事新能源材料及纳米纤维膜材料研究,sunguohua2014@163.com
    E-mail:fengxixi8023@163.com;sunguohua2014@163.com
  • 基金资助:
    河北省自然科学基金(E2024208003);河北省省级科技计划项目(20311201D);国家级大学生创新创业训练计划项目(202410082017)

Preparation and battery performance of polyimide/hydroxyethyl cellulose composite nanofiber membrane

HU Jiaai, ZHANG Yiqing, XU Jiahe, LI Qiaoli, FENG Xixi(), XU Xuan, LI Xinao, NI Tianheng, HOU Lianlong, MA Haikun, SUN Guohua()   

  1. Hebei Key Laboratory of Flexible Functional Materials,School of Materials Science and Engineering,Hebei University of Science and Technology,Shijiazhuang 050018,China
  • Received:2024-04-02 Online:2024-11-26 Published:2024-11-21
  • Contact: FENG Xixi, SUN Guohua E-mail:fengxixi8023@163.com;sunguohua2014@163.com

摘要:

以羟乙基纤维素(HEC)作为聚酰亚胺(PI)纳米纤维膜的功能改性材料,通过原位一体化增强改性技术制备了PI/HEC纳米纤维复合隔膜,通过HEC对PI纳米纤维进行均匀粘接包覆提升PI纤维膜强度,同时将HEC的极性官能团作为功能位点均匀分布在PI纳米纤维表面实现锂离子流的调控。研究表明,HEC的引入赋予PI/HEC隔膜优异的拉伸强度(58.65 MPa)、高浸润性(接触角14.31°),高离子电导率(1.63 mS/cm)及高离子迁移数(0.58);PI/HEC组装的电池在0.1 C表现出高放电容量(170.1 mAh/g),尤其在2 C下仍具有良好的放电容量(135 mAh/g),且在1 C循环100圈后的容量保持率达69.43 %,库伦效率接近100 %。此外,在1 mA/cm2 (1 mAh/cm2) 条件下的锂沉积测试中,PI/HEC电池稳定循环600 h后过电位低于0.23 V,且密度泛函理论计算证实HEC对锂离子有更高的结合能,因而HEC的极性基团可通过调控锂离子实现锂枝晶的抑制。

关键词: 聚酰亚胺, 羟乙基纤维素, 纤维膜, 隔膜, 锂枝晶

Abstract:

Polyimide (PI)/hydroxyethyl cellulose (HEC) nanofiber composite membranes were prepared via in⁃situ integrated reinforcement modification using HEC as a functional modification material for PI nanofiber membranes. The strength of PI nanofibers membrane was increased due to the bonding and coating of the PI nanofibers with HEC, and the polar functional groups of HEC were uniformly distributed on the surface of PI nanofibers to act as functional sites for realizing the regulation of lithium⁃ion flow. The results indicated that the introduction of HEC could endow the PI/HEC membranes with excellent tensile strength of 58.65 MPa, high wettability along with a contact angle of 14.31°, a high ion conductivity of 1.63 mS/cm, and a high lithium⁃ion transfer number of 0.58. The battery equipped with the PI/HEC composite membranes showed high discharge capacities of 170.1 and 135 mAh/g at 0.1 C and 2 C, respectively, a capacity retention rate of 69.43 % after 100 cycles at 1 C, and a Coulomb efficiency of nearly 100 %. In addition, the results from the lithium deposition test at 1 mA/cm2 indicated the potential of the battery was lower than 0.23 V after 600 h. The density function theory calculation results indicated that HEC has a higher binding energy for lithium ions, confirming that the functional site of HEC can regulate lithium ions to inhibit lithium dendrites.

Key words: polyimide, hydroxyethyl cellulose, nanofiber membrane, separator, lithium dendrite

中图分类号: