京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2022, Vol. 36 ›› Issue (10): 159-166.DOI: 10.19491/j.issn.1001-9278.2022.10.022
• Review • Previous Articles Next Articles
ZHANG Xiang1, WU Xian′an1, LI Changjin2, DU Changbiao1, LI Haoyi1, JIAO Zhiwei1, YANG Weimin1, ZHANG Yang1()
Received:
2022-04-18
Online:
2022-10-26
Published:
2022-10-27
CLC Number:
ZHANG Xiang, WU Xian′an, LI Changjin, DU Changbiao, LI Haoyi, JIAO Zhiwei, YANG Weimin, ZHANG Yang. Research progress in preparation and applications of polymer nanofibers based on micro⁃nano lamination technology[J]. China Plastics, 2022, 36(10): 159-166.
目标层 | 隔离层 | 共挤温度/℃ | 去除隔离层方法 | 参考文献 |
---|---|---|---|---|
PLA | PEO | - | 水 | [ |
PCL | PEO | 180 | 水 | [ |
PA6 | PEO | 240 | 水 | [ |
PE⁃LD | PVB | 200 | 乙醇 | [ |
PE⁃LD | PS | 210 | 甲苯 | [ |
PP/PE | PCL | - | 异丙醇 | [ |
PE⁃HD/PP | PS | 240 | 高压水枪 | [ |
PP/PA6 | PS | - | 高压水枪 | [ |
PE⁃LD/PE⁃HD | PS | 230 | 高压水枪 | [ |
PE⁃LD/PP | PA6 | - | Actafoam溶剂 | [ |
目标层 | 隔离层 | 共挤温度/℃ | 去除隔离层方法 | 参考文献 |
---|---|---|---|---|
PLA | PEO | - | 水 | [ |
PCL | PEO | 180 | 水 | [ |
PA6 | PEO | 240 | 水 | [ |
PE⁃LD | PVB | 200 | 乙醇 | [ |
PE⁃LD | PS | 210 | 甲苯 | [ |
PP/PE | PCL | - | 异丙醇 | [ |
PE⁃HD/PP | PS | 240 | 高压水枪 | [ |
PP/PA6 | PS | - | 高压水枪 | [ |
PE⁃LD/PE⁃HD | PS | 230 | 高压水枪 | [ |
PE⁃LD/PP | PA6 | - | Actafoam溶剂 | [ |
拉伸比 | 弹性模量/ GPa | 最大应力/ MPa | 断裂伸长率/ % | |
---|---|---|---|---|
PA6/PEO纤维带 的力学性能 | 1 | 0.8±0.2 | 51±5 | 443±61 |
2 | 2.2±0.2 | 97±5 | 26±7 | |
3 | 2.7±0.4 | 107±17 | 16±4 | |
4 | 3.3±0.2 | 145±16 | 12±2 | |
6 | 4.2±0.1 | 235±51 | 8±1 | |
PA6/PET纤维带 的机力学性能 | 1 | 0.33±0.02 | 54±9 | — |
4 | 2.5±0.4 | 330±12 | — | |
9.7 | 6.1±0.2 | 480±21 | — | |
普通纤维带 | 类型A | 1.9±0.1 | 131±15 | 17±1 |
类型B | 2.6±0.2 | 171±13 | 16±2 |
拉伸比 | 弹性模量/ GPa | 最大应力/ MPa | 断裂伸长率/ % | |
---|---|---|---|---|
PA6/PEO纤维带 的力学性能 | 1 | 0.8±0.2 | 51±5 | 443±61 |
2 | 2.2±0.2 | 97±5 | 26±7 | |
3 | 2.7±0.4 | 107±17 | 16±4 | |
4 | 3.3±0.2 | 145±16 | 12±2 | |
6 | 4.2±0.1 | 235±51 | 8±1 | |
PA6/PET纤维带 的机力学性能 | 1 | 0.33±0.02 | 54±9 | — |
4 | 2.5±0.4 | 330±12 | — | |
9.7 | 6.1±0.2 | 480±21 | — | |
普通纤维带 | 类型A | 1.9±0.1 | 131±15 | 17±1 |
类型B | 2.6±0.2 | 171±13 | 16±2 |
1 | GOPAL R, KAUR S, FENG C Y, et al. Electrospun nanofibrous polysulfone membranes as pre⁃filters: particulate removal [J]. Journal of Membrane Science, 2007, 289(1/2): 210⁃219. |
2 | 龚 雪, 杨金龙, 姜玉林, 等. 静电纺丝技术在锂离子动力电池中的应用 [J]. 化学进展, 2014(1): 41⁃47. |
GONG X, YANG J L, JIANG Y L,et al.Application of electrospinning technique in power Lithium⁃Ion batteries[J]. 2014(1): 41⁃47. | |
3 | KIM M, KIM Y K, LIM S K, et al. Efficient visible light⁃induced H2 production by Au@CdS/TiO2 nanofibers: Synergistic effect of core–shell structured Au@CdS and densely packed TiO2 nanoparticles [J]. Applied Catalysis B: Environmental, 2015, 166⁃167: 423⁃431. |
4 | PERSANO L, CAMPOSEO A, TEKMEN C, et al. Industrial upscaling of electrospinning and applications of polymer nanofibers: a review[J]. Macromolecular Materials and Engineering, 2013, 298(5): 504⁃520. |
5 | PRAKOBNA K, GALLAND S, BERGLUND L A. High⁃performance and moisture⁃stable cellulose⁃starch nanocomposites based on bioinspired core⁃shell nanofibers [J]. Biomacromolecules, 2015, 16(3): 904⁃912. |
6 | PEREZ R A, KIM H W. Core⁃shell designed scaffolds for drug delivery and tissue engineering [J]. Acta Biomater, 2015, 21: 2⁃19. |
7 | MACDIARMID A G, JONES W E, NORRIS I D, et al. Electrostatically⁃generated nanofibers of electronic polymers [J]. Synthetic Metals, 2001, 119(1⁃3): 27⁃30. |
8 | HUANG Z M, ZHANG Y Z, KOTAKI M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites [J]. Composites Science and Technology, 2003, 63(15): 2 223⁃2 253. |
9 | SEHAQUI H, ZHOU Q, BERGLUND L A. High⁃porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC) [J]. Composites Science and Technology, 2011, 71(13): 1 593⁃1 599. |
10 | 刘琼珍, 周 舟, 李沐芳, 等. 热塑性纳米纤维的制备及功能化 [J]. 中国材料进展, 2014, 33(8): 8. |
LIU Q Z, ZHOU Z, LI M F,et al. Fabrication and functionalization of thermoplastic nanofibers[J]. Materials China, 2014, 33(8): 8. | |
11 | HUANG Y, SONG J, YANG C, et al. Scalable manufacturing and applications of nanofibers [J]. Materials Today, 2019, 28: 98⁃113. |
12 | LI D, XIA Y. Electrospinning of Nanofibers: Reinventing the Wheel?[J]. Advanced Materials, 2004, 16(14): 1 151⁃1 170. |
13 | YANG W, LI H, CHEN X. Melt Electrospinning [M]. Electrospinning: Nanofabrication and Applications. 2019: 339⁃361. |
14 | 杨卫民, 李好义, 吴卫逢, 等. 熔体静电纺丝技术研究进展 [J]. 北京化工大学学报:自然科学版, 2014, (4): 13. |
15 | LEE Y E, WADSWORTH L C. Fiber and web formation of melt⁃blown thermoplastic polyurethane polymers [J]. Journal of Applied Polymer Science, 2007, 105(6): 3 724⁃3 727. |
16 | ELLISON C J, PHATAK A, GILES D W, et al. Melt blown nanofibers: Fiber diameter distributions and onset of fiber breakup [J]. Polymer, 2007, 48(11): 3 306⁃3 316. |
17 | LI H, KE Y, HU Y. Polymer nanofibers prepared by template melt extrusion [J]. Journal of Applied Polymer Science, 2006, 99(3): 1 018⁃1 023. |
18 | TU C, CAI Q, YANG J, et al. The fabrication and characterization of poly(lactic acid) scaffolds for tissue engineering by improved solid⁃liquid phase separation [J]. Polymers for Advanced Technologies, 2003, 14(8): 565⁃573. |
19 | 吴昌政, 丁玉梅, 李好义, 等. 熔体微分离心纺丝技术 [J]. 纺织学报, 2016, 37(1): 7. |
WU C Z, DING Y M, LI H Y,et al. Process of melt differential centrifugal spinning technology[J]. Journal of Textile Research, 2016, 37(1): 7. | |
20 | BADROSSAMAY M R, MCILWEE H A, GOSS J A, et al. Nanofiber assembly by rotary jet⁃spinning [J]. Nano Lett, 2010, 10(6): 2 257⁃2 261. |
21 | SONG J H, KIM Y T, CHO S, et al. Surface⁃embedded stretchable electrodes by direct printing and their uses to fabricate ultrathin vibration sensors and circuits for 3D structures [J]. Adv Mater, 2017, 29(43). 1702625 |
22 | LIU S, LI L. Ultrastretchable and self⁃healing double⁃network hydrogel for 3D printing and strain sensor [J]. ACS Appl Mater Interfaces, 2017, 9(31): 26 429⁃26 437. |
23 | 梁 越, 刘春玲, 冼启华,等. 闪蒸纺超细纤维非织造布研究及其应用 [J]. 福建轻纺, 2010, (7): 3. |
24 | JORDAN A M, VISWANATH V, KIM S E, et al. Processing and surface modification of polymer nanofibers for biological scaffolds: a review [J]. J Mater Chem B, 2016, 4(36): 5 958⁃5 974. |
25 | Alfey T, Schrenk W J. Multipolymer Systems[J]. Science (New York, N.Y.), 1980, 208(4446):813⁃818. |
26 | 熊良钊, 杨卫民, 周 星,等. 微纳层叠挤出技术的研究进展 [J]. 中国塑料, 2015, 29(8): 8. |
XIONG L Z, YANG W M, ZHOU X,et al. Research progress of extrusion technology for micro⁃nano layer films[J]. China Plastics,2015, 29(8): 8. | |
27 | 王 乾, 谢鹏程, 杨卫民, 等. 微纳叠层功能复合材料模内制备新方法 [J]. 塑料, 2011, 40(4): 50⁃52. |
WANG Q, XIE P C, YANG W M, et al. The new mould preparation methods of micro⁃nano laminated functional composite[J]. Plastics, 2011, 40(4): 50⁃52. | |
28 | JORDAN A M, KORLEY L. Toward a tunable fibrous scaffold: structural development during uniaxial drawing of coextruded poly(ε⁃caprolactone) fibers[J]. Macromolecules, 2015, 48(8): 2 614⁃2 627. |
29 | 王 明, 郭少云. 微纳多层功能复合材料的制备新技术 [J]. 工程塑料应用, 2008, 36(11): 5. |
WANG M, GUO S Y.Stratified functional composites with micromterer⁃or nanometer⁃scale thickness prepared by a new processing technology[J]. Engineering Plastics Application, 2008, 36(11): 5. | |
30 | 钟 雁, 谢鹏程, 吴 廷, 等. 新型微纳叠层功能复合材料制备装置及其性能研究 [J]. 橡塑技术与装备, 2011, 37(3): 4. |
31 | 李长金, 周 星, 焦志伟, 等. 层叠单元流道对纤维取向作用的数值模拟 [J]. 塑料科技, 2014, 42(4): 3. |
LI C J, ZHOU X, JIAO Z W, et al. Numerical simulation for effect of laminated element runner on fiber orientation[J]. Plastics Science and Technology,2014, 42(4): 3. | |
32 | 周 星, 焦志伟, 李长金, 等. 基于微纳层叠技术的PVC分子取向对增塑剂迁移的影响 [J]. 中国塑料, 2015, (5): 5. |
ZHOU X, JIAO Z W, LI C J, et al. Effect of pvc molecular orientation on plasticizer migration based on micro⁃nano lamination technology[J]. China Plastics, 2015, (5): 5. | |
33 | ARMSTRONG S R, DU J, BAER E. Co⁃extruded multilayer shape memory materials: Nano⁃scale phenomena [J]. Polymer, 2014, 55(2): 626⁃631. |
34 | JOSEPH E G, BUDHAVARAM N, DEPOLO W, et al. Nanoribbons fabricated by melt electrospinning [J]. Polymer Journal, 2020, 53(3): 493⁃503. |
35 | 盛天阳, 谭 晶, 张政和, 等. 微纳层叠聚丙烯腈凝胶流动特性的数值模拟研究 [J]. 中国塑料, 2021, 35(7): 6. |
SHENG T Y, TAN J, ZHANG Z H, et al. Numerical simulation of polyacrylonitrile gel flow characteristics in laminated runner[J]. China Plastics, 2021, 35(7): 6. | |
36 | GAO J, FU X T, DING M M, et al. Studies on partial compatibility of PP and PS [J]. Chinese Journal of Polymer Science, 2010, 28(4): 647⁃656. |
37 | CARR J M, LANGHE D S, PONTING M T, et al. Confined crystallization in polymer nanolayered films: A review [J]. Journal of Materials Research, 2012, 27(10): 1 326⁃1 350. |
38 | LAI C Y, HILTNER A, BAER E, et al. Deformation of confined poly(ethylene oxide) in multilayer films [J]. ACS Appl Mater Interfaces, 2012, 4(4): 2 218⁃2 227. |
39 | SCHRENK W J, ALFREY T. Coextruded multilayer polymer films and sheets⁃ science direct [J]. Polymer Blends, 1978: 129⁃165. |
40 | WANG J, AYYAR R, OLAH A, et al. Processing⁃structure⁃property relationships of novel fibrous filters produced by a melt⁃process [J]. Journal of Materials Science, 2015, 51(1): 188⁃203. |
41 | DU J, LIU D, CHEN S, et al. A novel method for fabricating continuous polymer nanofibers [J]. Polymer, 2016, 102: 209⁃213. |
42 | JORDAN A M, MAROTTA T, KORLEY L T J. Reducing environmental impact: solvent and PEO reclamation during production of melt⁃extruded PCL nanofibers[J].ACS Sustainable Chemistry & Engineering, 2015, 3(11): 2 994⁃3 003. |
43 | WANG J, OLAH A, BAER E. Continuous micro⁃/nano⁃fiber composites of polyamide 6/polyethylene oxide with tunable mechanical properties using a novel co⁃extrusion technique [J]. Polymer, 2016, 82: 166⁃171. |
44 | ZAKARIA M, SHIBAHARA K, NAKANE K. Melt⁃electrospun polyethylene nanofiber obtained from polyethylene/polyvinyl butyral blend film [J]. Polymers (Basel), 2020, 12(2). 457. |
45 | CHENG J, PU H, DU J. A processing method with high efficiency for low density polyethylene nanofibers reinforced by aligned carbon nanotubes via nanolayer coextrusion [J]. Polymer, 2017, 111: 222⁃228. |
46 | LENART W R, JANG K S, JORDAN A M, et al. Mechanically tunable dual⁃component polyolefin fiber mats via two⁃dimensional multilayer coextrusion [J]. Polymer, 2016, 103: 328⁃336. |
47 | WANG J, PONTING M, ZHANG C, et al. Fuel filtration properties and mechanism of a novel fibrous filter produced by a melt⁃process [J]. Journal of Membrane Science, 2017, 526: 229⁃241. |
48 | JANG K S. Exploring polyethylene/polypropylene nonwoven fabrics derived from two⁃dimensionally co⁃extruded composites: effects of delamination, consolidation, drawing and nanoparticle incorporation on mechanics, pore size and permeability[J]. Composites Science and Technology, 2018, 165: 380⁃387. |
49 | RAHMAN M A, WANG J, ZHANG C, et al. Novel micro⁃/nano⁃ porous cellular membranes by forced assembly co⁃extrusion technology[J].European Polymer Journal, 2016, 83: 99⁃113. |
50 | LI Z, OLAH A, BAER E. Micro⁃ and nano⁃layered processing of new polymeric systems [J]. Progress in Polymer Science, 2020, 102. 101210. |
51 | MUELLER C D, NAZARENKO S, EBELING T, et al. Novel structures by microlayer coextrusion⁃talc⁃filled PP, PC/SAN, and HDPE/LLDPE[J]. Polymer Engineering & Science, 2010, 37(2): 355⁃362. |
52 | ZHOU Z, CARR J, MACKEY M, et al. Interphase/interface modification on the dielectric properties of polycarbonate/poly(vinylidene fluoride⁃co⁃hexafluoropropylene) multilayer films for high⁃energy density capacitors [J]. Journal of Polymer Science Part B: Polymer Physics, 2013, 51(12): 978⁃991. |
53 | MOFIDFAR M, WANG J, LONG L, et al. Polymeric nanofiber/antifungal formulations using a novel co⁃extrusion approach [J]. AAPS PharmSciTech, 2017, 18(6): 1 917⁃1 924. |
54 | WANG J, LANGHE D, PONTING M, et al. Manufacturing of polymer continuous nanofibers using a novel co⁃extrusion and multiplication technique [J]. Polymer, 2014, 55(2): 673⁃85. |
55 | 杨卫民, 易 婷, 焦志伟, 等. 一种基于微积分层叠的熔体静电纺丝装置及方法: CN,201310593700.1 [P]. 2014⁃02⁃12. |
56 | 刘延波, 孙 健, 赵雪菲, 等. 静电纺纤维在生物医药应用领域的研究进展 [J]. 产业用纺织品, 2015, 33(9): 1⁃11. |
LIU Y B, SUN J, ZHAO X F,et al.Research progress on electrospinning fiber for biomedical applications[J]. Technical Textiles, 2015, 33(9): 1⁃11. | |
57 | TONCHEVA A, SPASOVA M, PANEVA D, et al. Polylactide (PLA)⁃based electrospun fibrous materials containing ionic drugs as wound dressing materials: a review[J]. International Journal of Polymeric Materials and Polymeric Biomaterials, 2014, 63(13): 657⁃671. |
58 | SHIN C, CHASE G G. Water⁃in⁃oil coalescence in micro⁃nanofiber composite filters [J]. Aiche J, 2004, 50(2): 343⁃350. |
59 | EJAZ AHMED F, LALIA B S, HILAL N, et al. Underwater superoleophobic cellulose/electrospun PVDF–HFP membranes for efficient oil/water separation[J]. Desalination, 2014, 344:48⁃54. |
60 | 张佳敏, 罗 丹, 杨 璐, 等. PVDF/PBS纤维膜的制备及其在油水分离中的应用:基于静电纺丝 [J]. 功能材料, 2019, 50(1):5. |
ZHANG J M, LUO D, YANG L, et al. The preparation of PVDF/PBS fiber membrane and its application in oil⁃water separation:based on electrospun[J]. Journal of Functional Materials, 2019, 50(1):5. | |
61 | 侯豪情, 许文慧, 丁义纯. 高性能聚合物电纺纳米纤维最新进展 [J]. 江西师范大学学报:自然科学版, 2018, 42(6): 14. |
HOU H Q, XU W H, DING Y C. The recent progress on high⁃performance polymer nanofibers by electrospinning[J]. Journal of Jiangxi Normal University( Natural Science), 2018, 42(6): 14. | |
62 | PARK J H, RUTLEDGE G C. 50th anniversary perspective: advanced polymer fibers: high performance and ultrafine [J]. Macromolecules, 2017, 50(15): 5 627⁃5 642. |
63 | MIQUELARD⁃GARNIER G, GUINAULT A, FROMON⁃TEIL D, et al. Dispersion of carbon nanotubes in polypropylene via multilayer coextrusion: influence on the mechanical properties [J].Polymer, 2013, 54(16): 4 290⁃4 297. |
[1] | GAO Yonghong, PENG Mengmi, JIN Qingping. Temperature effect on bond performance between glass fiber reinforcement polymer bars and concrete [J]. China Plastics, 2022, 36(9): 16-23. |
[2] | SONG Dejian, YU Peng, PENG Jinsong, XU Miaojun. Preparation of flame retardant EVA hot melt adhesive and its application in repairing cables [J]. China Plastics, 2022, 36(9): 53-56. |
[3] | YANG Chaoyong, GUO Jinqiang, WANG Fuyu, ZHNAG Yuxia. Research progress in preparation and modification methods of high-performance plastic films [J]. China Plastics, 2022, 36(9): 167-179. |
[4] | JIAO Zhiwei, WANG Kechen, ZHANG Yang, YANG Weimin. Performance of PVC/ABS composites filled with carbon black and talc powders based on carbon nano coating deposition [J]. China Plastics, 2022, 36(8): 10-15. |
[5] | ZHANG Bing. Study on test of oxidation induction time for random copolymer polypropylene pipe [J]. China Plastics, 2022, 36(8): 107-109. |
[6] | YANG Yan, WANG Jie, LI Zongyu, WANG Yiming, WANG Yunnan, LI Shuijuan, LEI Liangcai, LI Haiying. A review for synthetic methods of hyperbranched ionic liquid polymers [J]. China Plastics, 2022, 36(8): 159-165. |
[7] | DU Qing, HE Yi, YU Tanjing, LAN Yanjiao, ZHAO Yanzhi, ZHOU Juying. Preparation and characterization of oriented thermoplastic polyolefin/PAN/ MWCNT composites [J]. China Plastics, 2022, 36(8): 49-55. |
[8] | ZHU Zixuan, LIU Haifen, FAN Jiazhao, LI Huafeng, WANG Lixin. Research progress of adhesive materials and co⁃extrusion adhesion technology for photovoltaic backsheet [J]. China Plastics, 2022, 36(7): 174-186. |
[9] | ZHOU Shuyi, ZHU Min, LIU Yiying, CAO Shuhui, CAI Qixuan, NIE Hui, ZHANG Yuxia, ZHOU Hongfu. Research progress in polymer⁃based hemostatic materials [J]. China Plastics, 2022, 36(7): 74-84. |
[10] | SONG Jin, XU Hang, ZOU Wei, WANG Hong, ZHANG Chen. Preparation and adsorption properties of surface⁃functionalized polyacrylate porous beads for Cu2+ [J]. China Plastics, 2022, 36(7): 8-13. |
[11] | SHAO Linying, XI Yuewei, WENG Yunxuan. Research progress in degradation characteristics of poly(lactic acid) composites [J]. China Plastics, 2022, 36(6): 155-164. |
[12] | YANG Xiaolong, CHEN Wenjing, LI Yongqing, YAN Xiaokun, WANG Xiulei, XIE Pengcheng, MA Xiuqing. Research progress in polymer/graphene conductive composites [J]. China Plastics, 2022, 36(6): 165-173. |
[13] | SUN Qi, GAO Xing, CUI Xuemei, LIAN Huiqin, CUI Xiuguo, WANG Xiaodong. Research progress in development and applications of black phosphorene for flame retardancy of polymers [J]. China Plastics, 2022, 36(5): 133-139. |
[14] | WEI Liao. Research progress in application of water⁃soluble polymer materials for oil and gas field fracturing [J]. China Plastics, 2022, 36(5): 149-157. |
[15] | CHEN Sheng, LIANG Yingchao, WU Fangjuan, FANG Hui, FAN Xinfeng, CHEN Hui, WANG Yonggang. Preparation and interfacial modification of polyamide 6/bidirectional warp⁃knitted glass fiber composites [J]. China Plastics, 2022, 36(5): 24-28. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||