京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2023, Vol. 37 ›› Issue (1): 90-98.DOI: 10.19491/j.issn.1001-9278.2023.01.014
• Processing and Application • Previous Articles Next Articles
ZHOU Mei, LI Sijia, XU Weifeng, HUANG Jinbao(), LUO Xiaosong, WU Lei
Received:
2022-10-17
Online:
2023-01-26
Published:
2023-01-26
CLC Number:
ZHOU Mei, LI Sijia, XU Weifeng, HUANG Jinbao, LUO Xiaosong, WU Lei. Theoretical study on hydrolysis/alcoholysis/ammonolysis mechanisms of ethylene terephthalate dimer[J]. China Plastics, 2023, 37(1): 90-98.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plaschina.com.cn/EN/10.19491/j.issn.1001-9278.2023.01.014
温度/K | 水解/醇解/氨解反应[路径(1)/路径(2)路径(3)] | ||||||||
---|---|---|---|---|---|---|---|---|---|
ΔH/ kJ·mol-1 | ΔG/ kJ·mol-1 | ΔS/ J·(mol·K)-1 | ΔH/ kJ·mol-1 | ΔG/ kJ·mol-1 | ΔS/ J·(mol·K)-1 | ΔH/ kJ·mol-1 | ΔG/ kJ·mol-1 | ΔS/ J·(mol·K)-1 | |
298 | 20.8 | 5.0 | 53.0 | -15.9 | -19.9 | 13.2 | 24.2 | 5.2 | 63.8 |
400 | 18.1 | 0.2 | 44.7 | -16.0 | -21.2 | 12.9 | 23.4 | -1.1 | 61.4 |
500 | 16.2 | -4.1 | 40.5 | -16.0 | -22.5 | 12.9 | 23.2 | -7.3 | 60.9 |
600 | 14.8 | -8.0 | 38.0 | -16.0 | -23.8 | 12.9 | 23.2 | -13.4 | 61.0 |
700 | 13.9 | -11.7 | 36.5 | -16.0 | -25.1 | 12.9 | 23.4 | -19.5 | 61.2 |
800 | 13.1 | -15.3 | 35.6 | -16.0 | -26.4 | 13.0 | 23.6 | -25.6 | 61.5 |
900 | 12.6 | -18.8 | 34.9 | -16.0 | -27.7 | 13.0 | 23.8 | -31.8 | 61.7 |
温度/K | 水解/醇解/氨解反应[路径(1)/路径(2)路径(3)] | ||||||||
---|---|---|---|---|---|---|---|---|---|
ΔH/ kJ·mol-1 | ΔG/ kJ·mol-1 | ΔS/ J·(mol·K)-1 | ΔH/ kJ·mol-1 | ΔG/ kJ·mol-1 | ΔS/ J·(mol·K)-1 | ΔH/ kJ·mol-1 | ΔG/ kJ·mol-1 | ΔS/ J·(mol·K)-1 | |
298 | 20.8 | 5.0 | 53.0 | -15.9 | -19.9 | 13.2 | 24.2 | 5.2 | 63.8 |
400 | 18.1 | 0.2 | 44.7 | -16.0 | -21.2 | 12.9 | 23.4 | -1.1 | 61.4 |
500 | 16.2 | -4.1 | 40.5 | -16.0 | -22.5 | 12.9 | 23.2 | -7.3 | 60.9 |
600 | 14.8 | -8.0 | 38.0 | -16.0 | -23.8 | 12.9 | 23.2 | -13.4 | 61.0 |
700 | 13.9 | -11.7 | 36.5 | -16.0 | -25.1 | 12.9 | 23.4 | -19.5 | 61.2 |
800 | 13.1 | -15.3 | 35.6 | -16.0 | -26.4 | 13.0 | 23.6 | -25.6 | 61.5 |
900 | 12.6 | -18.8 | 34.9 | -16.0 | -27.7 | 13.0 | 23.8 | -31.8 | 61.7 |
1 | SAMAK N A, JIA Y, SHARSHAR M M, et al. Recent advances in biocatalysts engineering for polyethylene terephthalate plastic waste green recycling[J]. Environment International, 2020, 145: 106144. |
2 | JANKAUSKAITE V. Recycled polyethylene terephthalate waste for different application solutions[J]. Environmental Research, Engineering and Management, 2016, 72(1): 5⁃7. |
3 | DAS S K, ESHKALAK S K, CHINNAPPAN A, et al. Plastic recycling of polyethylene terephthalate (PET) and polyhydroxybutyrate (PHB)⁃A comprehensive review[J]. Materials Circular Economy, 2021, 3(1): 1⁃22. |
4 | ZIMMERMANN W. Biocatalytic recycling of polyethylene terephthalate plastic[J]. Philosophical Transactions of The Royal Society A, 2020, 378(2176): 20190273. |
5 | WEI R, ZIMMERMANN W. Biocatalysis as a green route for recycling the recalcitrant plastic polyethylene terephthalate[J]. Microbial Biotechnology, 2017, 10(6): 1 302. |
6 | RAHEEM A B, NOOR Z Z, HASSAN A, et al. Current developments in chemical recycling of post⁃consumer polyethylene terephthalate wastes for new materials production: a review[J]. Journal of Cleaner Production, 2019, 225: 1 052⁃1 064. |
7 | AL⁃SABAGH A M, YEHIA F Z, ESHAQ G, et al. Greener routes for recycling of polyethylene terephthalate[J]. Egyptian Journal of Petroleum, 2016, 25(1): 53⁃64. |
8 | SOJOBI A O, NWOBODO S E, ALADEGBOYE O J. Recycling of polyethylene terephthalate (PET) plastic bottle wastes in bituminous asphaltic concrete[J]. Cogent Engineering, 2016, 3(1): 1133480. |
9 | KUMARTASLI S, AVINC O. Important step in sustainability: polyethylene terephthalate recycling and the recent developments[J]. Sustainability in the Textile and Apparel Industries, 2020: 1⁃19. |
10 | AYODEJI S O, ONI T O. Thermal pyrolysis production of liquid fuel from a mixture of polyethylene terephthalate and polystyrene[J]. Heat Transfer⁃Asian Research, 2019, 48(5): 1 648⁃1 662. |
11 | DHAHAK A, GRIMMER C, NEUMANN A, et al. Real time monitoring of slow pyrolysis of polyethylene terephthalate (PET) by different mass spectrometric techniques[J]. Waste Management, 2020, 106: 226⁃239. |
12 | HUANG W C, HUANG M S, HUANG C F, et al. Thermochemical conversion of polymer wastes into hydrocarbon fuels over various fluidizing cracking catalysts[J]. Fuel, 2010, 89(9): 2 305⁃2 316. |
13 | SONGIP A R, MASUDA T, KUWAHARA H, et al. Kinetic studies for catalytic cracking of heavy oil from waste plastics over REY zeolite[J]. Energy & Fuels, 1994, 8(1): 131⁃135. |
14 | BARTH M, OESER T, WEI R, et al. Effect of hydrolysis products on the enzymatic degradation of polyethylene terephthalate nanoparticles by a polyester hydrolase from Thermobifida fusca[J]. Biochemical Engineering Journal, 2015, 93: 222⁃228. |
15 | 刘 丽. 聚对苯二甲酸丁二醇酯在亚临界酸性水溶液和超/亚临界乙醇中的解聚研究[D]. 杭州: 浙江工业大学, 2011. |
16 | 戴娟娟. 亚临界水中聚对苯二甲酸丁二醇酯的 (催化) 解聚研究[D]. 杭州: 浙江工业大学, 2010. |
17 | 杨 伟. 聚酯复合材料无卤协效阻燃研究及机理的研究[D]. 合肥: 中国科学技术大学, 2012. |
18 | ČOLNIK M, KNEZ Ž, ŠKERGET M. Sub⁃and supercritical water for chemical recycling of polyethylene terephthalate waste[J]. Chemical Engineering Science, 2021, 233: 116389. |
19 | XUE Y, JOHNSTON P, BAI X. Effect of catalyst contact mode and gas atmosphere during catalytic pyrolysis of waste plastics[J]. Energy Conversion and Management, 2017, 142: 441⁃451. |
20 | GOLIKE R C, LASOSKI JR S W. Kinetics of hydrolysis of polyethylene terephthalate films[J]. The Journal of Physical Chemistry, 1960, 64(7): 895⁃898. |
21 | DU J T, SUN Q, ZENG X F, et al. ZnO nanodispersion as pseudohomogeneous catalyst for alcoholysis of polyethylene terephthalate[J]. Chemical Engineering Science, 2020, 220: 115642. |
22 | CAMPANELLI J R, COOPER D G, KAMAL M R. Catalyzed hydrolysis of polyethylene terephthalate melts[J]. Journal of Applied Polymer Science, 1994, 53(8): 985⁃991. |
23 | YOSHIOKA T, MOTOKI T, OKUWAKI A. Kinetics of hydrolysis of poly (ethylene terephthalate) powder in sulfuric acid by a modified shrinking⁃core model[J]. Industrial & Engineering Chemistry Research, 2001, 40(1): 75⁃79. |
24 | 杨华光, 梁桂英, 王春晓, 等. 金属锌功能化离子液体催化PET聚酯醇解反应[J]. 材料科学与工程学报, 2012, 30(5): 747⁃751. |
YANG H G, LIANG G Y, WANG C X, et al. PET glycolysis catalyzed by zinc task special ionic liquids[J]. Journal of Materials Science and Engineering, 2012, 30(5): 747⁃751. | |
25 | 姚浩余. PET 醇解协同催化体系的构建及反应机理研究[D]. 北京: 中国科学院大学 (中国科学院过程工程研究所), 2021. |
26 | KOJIMA H, MORI T. Gaussian 09 (Revision B. 01), 2009[J]. Chemistry letters, 2013, 42(1): 68⁃70. |
27 | 蒙含仙, 黄金保, 程小彩, 等. 聚对苯二甲酸乙二醇酯二聚体模化物键离能的理论研究[J]. 分子科学学报, 2021, 37(3): 261⁃267. |
MENG H X, HUANG J B, CHENG X C, et al. Theoretical study on bond dissociation energy of polyethylene terephthalate dimer compound[J]. Journal of Molecular Science, 2021, 37(3): 261⁃267. | |
28 | HUANG J, MENG H, LUO X, et al. Insights into the thermal degradation mechanisms of polyethylene terephthalate dimer using DFT method[J]. Chemosphere, 2022, 291: 133112. |
29 | HUANG J, LI X, MENG H, et al. Studies on pyrolysis mechanisms of syndiotactic polystyrene using DFT method[J]. Chemical Physics Letters, 2020, 747: 137334. |
30 | 黄金保, 李新生, 潘贵英, 等. 双酚A聚碳酸酯热解机理的理论研究[J]. 工程热物理学报, 2019, 40 (8): 1 813⁃1 819. |
HUANG J B, LI X S, PAN G Y, et al. A theoretical research on pyrolysis mechanism of poly (bisphenol A carbonate) [J]. Journal of Engineering Thermophysics, 2019, 40 (8): 1 813⁃1 819. | |
31 | NIU Z H, HOU W S, SHI S, et al. Study on the subcritical water hydrolysis of waste polyethylene terephthalate[J]. Fine Chemical Industry, 2015, 32(2): 126⁃132. |
32 | 王媚娴, 潘志彦, 戴娟娟, 等. 超/亚临界水中聚对苯二甲酸乙二醇酯的解聚[J]. 高校化学工程学报, 2011, 25(5): 904⁃910. |
WANG M X, PAN Z Y, DAI J J, et al. Depolymerization of polyethylene terephthalate in sub⁃ and supercritical water[J]. Journal of Chemical Engineering of Chinese Universities, 2011, 25(5): 904⁃910. | |
33 | BUXBAUM L H. The degradation of poly (ethylene terephthalate)[J]. Angewandte Chemie International Edition in English, 1968, 7(3): 182⁃190. |
34 | 张现刚. 超/亚临界水中聚碳酸酯/聚对苯二甲酸乙二醇酯催化解聚研究[D]. 杭州: 浙江工业大学, 2009. |
35 | 刘立新, 胡 达, 刘若望, 等. 聚对苯二甲酸乙二醇酯 (PET) 的解聚与反应机理研究[J]. 功能材料, 2004 (Z1): 2 576⁃2 578. |
LIU L X, HU D, LIU R W, et al. Study on depolymerization and Reaction mechanism of polyethylene terephthalate (PET) [J]. Journal of Functional Materials, 2004 (Z1): 2 576⁃2 578. | |
36 | 陈 磊, 吴勇强, 倪燕慧, 等. 聚对苯二甲酸乙二醇酯在超临界甲醇中解聚的研究[J]. 高校化学工程学报, 2004, 18(5): 585⁃589. |
CHEN L, WU Y Q, NI Y H, et al. Study on depolymerization of polyethylene terephthalate in supercritical methanol [J]. Journal of Chemical Engineering of Chinese Universities, 2004, 18(5): 585⁃589. | |
37 | DIMITROV N, KREHULA L K, SIROČIĆ A P, et al. Analysis of recycled PET bottles products by pyrolysis⁃gas chromatography[J]. Polymer Degradation and Stability, 2013, 98(5): 972⁃979. |
38 | LORENZETTI C, MANARESI P, BERTI C, et al. Chemical recovery of useful chemicals from polyester (PET) waste for resource conservation: a survey of state of the art[J]. Journal of Polymers and the Environment, 2006, 14(1): 89⁃101. |
39 | 俞 昊, 黄 芳, 冯淑芹, 等. 废聚对苯二甲酸乙二醇酯的高温醇解研究[J]. 合成纤维工业, 2014, 37(1): 9⁃12. |
YU H, HUANG F, FENG S Q, et al. Study on high⁃temperature alcoholysis of waste polyethylene terephthalate [J]. Synthetic Fiber Industry, 2014, 37(1): 9⁃12. | |
40 | 郑 煦, 张瑞琦, 方鹏涛, 等. 离子液体催化聚对苯二甲酸乙二醇酯降解研究进展[J]. 中国科学: 化学, 2021, 51(10): 1 330⁃1 342. |
ZHENG X, ZHANG R Q, FANG P T, et al. Research progress of ionic liquid catalyzed degradation of polyethylene terephthalate [J]. Science China: Chemistry, 2021, 51(10): 1 330⁃1 342. | |
41 | SHUKLA S R, HARAD A M. Aminolysis of polyethylene terephthalate waste[J]. Polymer Degradation and Stability, 2006, 91(8): 1 850⁃1 854. |
42 | SPYCHAJ T, FABRYCY E, KACPERSKI M. Aminolysis and aminoglycolysis of waste poly (ethylene terephthalate)[J]. Journal of Material Cycles and Waste Management, 2001, 3(1): 24⁃31. |
43 | YAO H, LU X, JI L, et al. Multiple hydrogen bonds promote the nonmetallic degradation process of polyethylene terephthalate with an amino acid ionic liquid catalyst[J]. Industrial & Engineering Chemistry Research, 2021, 60(10): 4 180⁃4 188. |
44 | HUANG J, LIU C, WU D, et al. Density functional theory studies on pyrolysis mechanism of β⁃O-4 type lignin dimer model compound[J]. Journal of Analytical and Applied Pyrolysis, 2014, 109: 98⁃108. |
45 | HUANG J, HE C. Pyrolysis mechanism of α⁃O-4 linkage lignin dimer: a theoretical study[J]. Journal of Analytical and Applied Pyrolysis, 2015, 113: 655⁃664. |
46 | HUANG J, HE C, LIU C, et al. A computational study on thermal decomposition mechanism of β-1 linkage lignin dimer[J]. Computational and Theoretical Chemistry, 2015, 1054: 80⁃87. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||