京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2023, Vol. 37 ›› Issue (1): 119-132.DOI: 10.19491/j.issn.1001-9278.2023.01.018
• Plastic and Environment • Previous Articles Next Articles
YANG Tianxue1(), YANG Zhe1,3, ZHANG Junping2, WANG Ming3, GONG Tiancheng1, ZHANG Ting1, HOU Jiaqi1, XI Beidou1(
)
Received:
2022-10-25
Online:
2023-01-26
Published:
2023-01-26
CLC Number:
YANG Tianxue, YANG Zhe, ZHANG Junping, WANG Ming, GONG Tiancheng, ZHANG Ting, HOU Jiaqi, XI Beidou. Comparative analysis of research hotspots and trends of domestic and foreign biodegradable films[J]. China Plastics, 2023, 37(1): 119-132.
序号 | WOS | CNKI | |||||
---|---|---|---|---|---|---|---|
机构 | 发文量/篇 | 首次发文年份 | BC值 | 机构 | 发文量/篇 | 首次发文年份 | |
1 | 中国科学院 | 25 | 2000年 | 0.05 | 上海交通大学 | 21 | 2000年 |
2 | 中船重工 | 15 | 2005年 | 0.14 | 内蒙古农业大学 | 21 | 2000年 |
3 | 北京林业大学 | 13 | 2011年 | 0 | 天津科技大学 | 19 | 2008年 |
4 | 马来西亚博特拉大学 | 11 | 2016年 | 0.03 | 山东农业大学 | 8 | 2008年 |
5 | 浙江大学 | 10 | 2005年 | 0.01 | 中国科学院大连化学物理研究所 | 7 | 2001年 |
6 | 全南大学 | 8 | 2005年 | 0.01 | 太原理工大学 | 5 | 2013年 |
7 | 伊斯兰阿扎德大学 | 7 | 2014年 | 0.10 | 江南大学 | 5 | 2014年 |
8 | 康奈尔大学 | 7 | 2004年 | 0 | 东华大学 | 4 | 2002年 |
9 | 加拿大国家科学与技术委员会 | 7 | 2010年 | 0 | 南京林业大学 | 4 | 2014年 |
10 | 丰桥技术科学大学 | 6 | 2003年 | 0 | 吉林农业大学 | 4 | 2017年 |
序号 | WOS | CNKI | |||||
---|---|---|---|---|---|---|---|
机构 | 发文量/篇 | 首次发文年份 | BC值 | 机构 | 发文量/篇 | 首次发文年份 | |
1 | 中国科学院 | 25 | 2000年 | 0.05 | 上海交通大学 | 21 | 2000年 |
2 | 中船重工 | 15 | 2005年 | 0.14 | 内蒙古农业大学 | 21 | 2000年 |
3 | 北京林业大学 | 13 | 2011年 | 0 | 天津科技大学 | 19 | 2008年 |
4 | 马来西亚博特拉大学 | 11 | 2016年 | 0.03 | 山东农业大学 | 8 | 2008年 |
5 | 浙江大学 | 10 | 2005年 | 0.01 | 中国科学院大连化学物理研究所 | 7 | 2001年 |
6 | 全南大学 | 8 | 2005年 | 0.01 | 太原理工大学 | 5 | 2013年 |
7 | 伊斯兰阿扎德大学 | 7 | 2014年 | 0.10 | 江南大学 | 5 | 2014年 |
8 | 康奈尔大学 | 7 | 2004年 | 0 | 东华大学 | 4 | 2002年 |
9 | 加拿大国家科学与技术委员会 | 7 | 2010年 | 0 | 南京林业大学 | 4 | 2014年 |
10 | 丰桥技术科学大学 | 6 | 2003年 | 0 | 吉林农业大学 | 4 | 2017年 |
主要方法 | 改性方式 | 原理 | 优缺点 | 参考文献 |
---|---|---|---|---|
物理法 | 超声改性 | 通过超声波的机械力、空化作用和热效应改变可降解膜化学键结构使膜的物理、化学性质发生变化。 | 处理迅速、无污染;易过度破坏物质结构 | [ |
高压改性 | 通过高压的机械力使膜结构密实度变化,改变了膜的形貌、空间结构,从而引起孔径、力学性能等变化。 | 能耗少;存在高压风险 | [ | |
共混改性 | 加入不同组分共混,通过不同组分功能基团间的分子间氢键、离子键以及分子链缠结等作用,使膜功能性、力学性能、稳定性等改变。 | 成本低、环保性强;易受混合均质度影响 | [ | |
化学法 | 酸改性 | 在膜制备过程中加入酸,经酸化影响成膜组分的官能团、键能和化学键结构,改变膜的化学性质,影响其性能。 | 性能稳定;易造成化学污染 | [ |
碱改性 | 在膜制备过程中加入碱,成膜组分发生水解、醚化等反应导致膜中官能团和聚合物链的连接改变,使膜性能发生变化。 | 稳定性高;易造成碱污染 | [ | |
接枝改性 | 通过不同聚合物间接枝共聚反应改变单一聚合物官能团类型、键能、聚合物链的空间结构等,进而影响膜功能性、结晶度、透气性、力学性能等。 | 增加官能团,性能提升全面;存在化学残留风险 | [ | |
交联改性 | 通过加入交联剂使官能团之间发生交联反应,原来的线型或轻度支链型大分子形成三维网状结构,束缚分子链的运动,导致膜微观结构、功能基团改变。 | 强度提升;易造成膜脆性过大 | [ | |
生物法 | 生物酶改性 | 在生物酶作用下促进新键生成,改变材料分子间键能、分子链结构、反应强度等,影响膜微观结构与性能。 | 效率高、专一性强;成本高 | [ |
主要方法 | 改性方式 | 原理 | 优缺点 | 参考文献 |
---|---|---|---|---|
物理法 | 超声改性 | 通过超声波的机械力、空化作用和热效应改变可降解膜化学键结构使膜的物理、化学性质发生变化。 | 处理迅速、无污染;易过度破坏物质结构 | [ |
高压改性 | 通过高压的机械力使膜结构密实度变化,改变了膜的形貌、空间结构,从而引起孔径、力学性能等变化。 | 能耗少;存在高压风险 | [ | |
共混改性 | 加入不同组分共混,通过不同组分功能基团间的分子间氢键、离子键以及分子链缠结等作用,使膜功能性、力学性能、稳定性等改变。 | 成本低、环保性强;易受混合均质度影响 | [ | |
化学法 | 酸改性 | 在膜制备过程中加入酸,经酸化影响成膜组分的官能团、键能和化学键结构,改变膜的化学性质,影响其性能。 | 性能稳定;易造成化学污染 | [ |
碱改性 | 在膜制备过程中加入碱,成膜组分发生水解、醚化等反应导致膜中官能团和聚合物链的连接改变,使膜性能发生变化。 | 稳定性高;易造成碱污染 | [ | |
接枝改性 | 通过不同聚合物间接枝共聚反应改变单一聚合物官能团类型、键能、聚合物链的空间结构等,进而影响膜功能性、结晶度、透气性、力学性能等。 | 增加官能团,性能提升全面;存在化学残留风险 | [ | |
交联改性 | 通过加入交联剂使官能团之间发生交联反应,原来的线型或轻度支链型大分子形成三维网状结构,束缚分子链的运动,导致膜微观结构、功能基团改变。 | 强度提升;易造成膜脆性过大 | [ | |
生物法 | 生物酶改性 | 在生物酶作用下促进新键生成,改变材料分子间键能、分子链结构、反应强度等,影响膜微观结构与性能。 | 效率高、专一性强;成本高 | [ |
1 | 焦 阳,李之行,张瑛洁,等.可生物降解分离膜材料及其应用研究进展[J].化工进展,2021,40(2):949⁃958. |
JIAO Y, LI Z X, ZHANG Y J, et al. Research progress on biodegradable separation membrane materials and their applications[J]. Progress in Chemical Industry, 2021, 40(2): 949⁃958. | |
2 | Restrepo⁃Flórez J M, BASSI A, THOMPSON M R. Microbial degradation and deterioration of polyethylene – a review[J]. International Biodeterioration & Biodegradation, 2014, 88: 83⁃90. |
3 | Liu E K, He W Q, Yan C R. ‘White revolution’ to ‘white pollution’—agricultural plastic film mulch in China[J]. Environmental Research Letters, 2014, 9(9), doi:10.1 088/1 748-9 326/9/9/091 001 . |
4 | 史 可,张 晶,苏婷婷,等.生物可降解塑料的改性研究进展[J].化工新型材料,2019,47(4):29⁃33. |
SHI K, ZHANG J, SU T T, et al. Modification progress of biodegradable plastics[J]. New Chemical Materials, 2019, 47(4): 29⁃33. | |
5 | 刘亦晴.浅析塑料降解及回收利用技术[J].科技经济市场,2020(9):5⁃7. |
6 | 庞春安.国外生物降解薄膜的研究进展[J].精细化工,1987(6):53⁃58. |
7 | 吴玉凯,应珊红,马玉莲.降解塑料的现状与展望[J].科研与设计,1992(2):21⁃24. |
8 | 刘 敏,黄占斌,杨玉姣.可生物降解地膜的研究进展与发展趋势[J].中国农学通报,2008(9):439⁃443. |
LIU M, HUANG Z B, YANG Y J. A study on status and developmental trend of biodegradable plastic film[J]. Chinese Agricultural Science Bulletin, 2008(9): 439⁃443. | |
9 | 师 岩,李凤红,姜天赐,等.可生物降解膜材料的研究进展[J].化工新型材料,2020,48(5):16⁃19,25. |
SHI Y, LI F H, JIANG T C, et al. Research progress on biodegradable film material[J]. New Chemical Materials, 2020, 48(5):16⁃19,25. | |
10 | 贾仕奎,杜 兴,张明辉,等.生物可降解膜的改性制备及其应用进展[J].化工新型材料,2022,50(3):18⁃22,34. |
JIA S K, DU X, ZHANG M H, et al. Recent progress on preparation, modification and application of biodegradable membrane[J]. New Chemical Materials, 2022, 50(3): 18⁃22,34. | |
11 | A A Mohamed Salah, El⁃Sakhawy Mohamed, Mohamed Abdel⁃Monem El⁃Sakhawy. Polysaccharides, protein and lipid ⁃based natural edible films in food packaging: a review[J]. Carbohydrate Polymers, 2020, 238: 116⁃178. |
12 | 娄丽娜.文献计量学在科研机构竞争力评价中的应用研究[J].图书情报工作,2014,58(S2):209⁃211,214. |
13 | 陈悦. 引文空间分析原理与应用:CiteSpace实用指南[M]. 北京:科学出版社,2014:164. |
14 | Garrido⁃Romero Manuel, Aguado Roberto, Moral Ana, et al. From traditional paper to nanocomposite films: analysis of global research into cellulose for food packaging[J]. Food Packaging and Shelf Life, 2022, 31: 100 788. |
15 | 曹 侃.基于文献计量分析的可食用膜技术研究现状与发展趋势[J].宜春学院学报,2019,41(3):25⁃28,67. |
CAO K. Research situation and development trend of edible film technology based on bibliometric analysis[J]. Journal of Yichun University, 2019, 41(3): 25⁃28,67. | |
16 | Morris Steven A, Betsy Van der Veer Martens. Mapping research specialties[J]. Annual Review of Information Science and Technology, 2008, 42: 213⁃295. |
17 | 李 杰,陈超美.CiteSpace科技文本挖掘及可视化[M]. 北京:首都经济贸易大学出版社, 2016:301. |
18 | 付 健,丁敬达.CiteSpace和VOSviewer软件的可视化原理比较[J].农业图书情报,2019,31(10):31⁃37. |
FU J, DING J D. Comparison of visualization principles between citespace and VOSviewer[J]. Journal of Library and Information Science in Agriculture, 2019, 31(10): 31⁃37. | |
19 | 串丽敏,郑怀国,赵同科,等.基于Web of Science数据库的土壤污染修复领域发展态势分析[J].农业环境科学学报,2016,35(1):12⁃20. |
CHUAN L M, ZHENG H G, ZHAO T K, et al. Trends in research on contaminated soil remediation based on web of science database[J]. Journal of Agro⁃Environment Science, 2016, 35(1): 12⁃20. | |
20 | 国家发改委,生态环境部. “十四五”塑料污染治理行动方案的通知[EB/OL]. (2021⁃09⁃16)[2022⁃08⁃12]. . |
21 | 人民网.首个全球“限塑令”要来了[EB/OL]. (2022⁃03⁃03)[2022⁃08⁃12]. . |
22 | 田 稼,路鹏鹏,孙 超,等.基于Web of Science数据库的微生物肥料研究发展趋势分析[J].中国农业科技导报,2019,21(3):1⁃12. |
TIAN J, LU P P, SUN C, et al. Analysis on the deve⁃lopment trends of microbial fertilizer research based on the web of science database[J]. Journal of Agricultural Science and Technology, 2019, 21(3): 1⁃12. | |
23 | 陈 悦,陈超美,刘则渊,等.CiteSpace知识图谱的方法论功能[J].科学学研究,2015,33(2):242⁃253. |
CHEN Y, CHEN C M, LIU Z Y, et al. The methodology function of CiteSpace mapping knowledge domains[J]. Studies in Science of Science, 2015, 33(2): 242⁃253. | |
24 | 艾瑞咨询.2022年中国可降解材料市场研究报告[EB/OL]. (2022⁃05⁃11)[2022⁃08⁃12],. |
25 | 丁学东 .文献计量学基础[M].北京:北京大学出版社,1993:373. |
26 | 李先跃.中国文化产业与旅游产业融合研究进展及趋势——基于Citespace计量分析[J].经济地理,2019,39(12):212⁃220,229. |
LI X Y. Research progress and trend of integration of Chinese cultural industry and tourism industry: based on catespace analysis[J]. Economic Geography, 2019, 39(12): 212⁃220,229. | |
27 | Cazón Patricia, Vázquez Manuel, Velazquez Gonzalo. Composite films with UV⁃barrier properties based on bacterial cellulose combined with chitosan and poly(vinyl alcohol): study of puncture and water interaction properties[J]. Biomacromolecules, 2019, 20: 2 084⁃2 095. |
28 | Peng Xinwen, Ren Junli, Sun Runcang. An efficient method for the synthesis of hemicellulosic derivatives with bifunctional groups in butanol/water medium and their rheological properties[J]. Carbohydrate Polymers, 2011, 2011, 83(4): 1 922⁃1 928. |
29 | 王建清,张 莉.NMMO法纤维素膜的制备及力学性能[J].天津科技大学学报,2008,23(4):9⁃13. |
WANG J Q, ZHANG L. Preparation of cellulose films and mechanical properties by NMMO[J]. Journal of Tianjin University of Science and Technology, 2008, 23(4): 9⁃13. | |
30 | 高 珊,于 力,邓 云,等.冻融处理对淀粉膜结构、热稳定性、机械性能及物理性质的影响(英文)[J].食品科学, 2021,42(21):72⁃79. |
GAO S, YU L, DENG Y, et al. Effect of freeze⁃thaw treatment on structural, thermal, mechanical and physical properties of starch⁃based films[J]. Food Science, 2021, 42(21): 72⁃79. | |
31 | Chen Chaomei. Cite Space II: Detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of the American Society for Information Science and Technology, 2006, 57(3): 359⁃377. |
32 | Amaraweera Amaraweera M, Gunathilake Chamila, H P Gunawardene Oneesha, et al. Preparation and characterization of biodegradable cassava starch thin films for potential food packaging applications[J]. Cellulose, 2021, 28(16): 10 531⁃10 548. |
33 | Mariana Pereira Martins, Romaildo Santos de Sousa, João Luiz Andreotti Dagostin, et al. Impact of clove essential oil and potassium sorbate incorporation on cassava starch⁃based films reinforced peach palm cellulose nanofibrils[J]. Journal of Food Processing and Preservation, 2022, 46(10): 16 867. |
34 | Teklu Gadisa Tafa, Preparation of green film with improved physicochemical properties and enhanced antimicrobial activity using ingredients from cassava peel, bamboo leaf and rosemary leaf[J]. Heliyon, 2022, 8(8): 10 130. |
35 | 卢俊宇,朱 芮,吴贺君,等.茶多酚对可食性马铃薯淀粉/海藻酸钠复合膜性能影响及表征[J].核农学报,2020,34(10):2 226⁃2 234. |
LU J Y, ZHU R, WU H J, et al. Effect of tea polyphenols on the properties of edible potato starch /sodium alginate composite films[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(10): 2 226⁃2 234. | |
36 | 王兴文,侯贤清,李文芸,等.旱作区环保型材料覆盖对马铃薯生长的影响及其降解特性[J].干旱地区农业研究,2018,36(3):86⁃92,112. |
WANG X W, HOU X Q, LI W Y, et al. Effect of environmental⁃friendly materials mulch on potato growth and their degradation properties in dry⁃farming areas[J]. Agricultural Research in the Arid Areas, 2018, 36(3): 86⁃92,112. | |
37 | Yi Yang, Meng Guanfei. A bibliometric analysis of comparative research on the evolution of international and Chinese ecological footprint researc h hotspots and frontiers since 2000[J]. Ecological Indicators, 2019, 102: 650⁃665. |
38 | Yan Yang, Li Puwang, Jing Jiao, et al. Renewable sourced biodegradable mulches and their environment impact[J]Scientia Horticulturae, 2020, 268: 109 375. |
39 | Zhao Guili, Xiaomei Lyu, Lee Jaslyn, et al. Biodegradable and transparent cellulose film prepared eco⁃friendly from durian rind for packaging application[J]. Food Packaging and Shelf Life, 2019, 21(36): 100 345. |
40 | Garcia Patrícia S, Baron Alessandra M, Yamashita Fabio, et al. Compatibilization of starch/poly(butylene adipate⁃co⁃terephthalate) blown films using itaconic acid and sodium hypophosphite[J]. Journal of Applied Polymer Science, 2018, 135(33): 46 629. |
41 | Garrido T, Etxabide A, Leceta I, et al. Valorization of soya by⁃products for sustainable packaging[J]. Journal of Cleaner Production, 2014, 64: 228⁃233. |
42 | Narasagoudr Shivayogi S, Hegde Veena G, Chougale Ravindra B, et al. Influence of boswellic acid on multifunctional properties of chitosan/poly (vinyl alcohol) films for active food packaging[J]. International Journal of Biological Macromolecules, 2020, 154(12): 48⁃61. |
43 | Asgher Muhammad, Sarmad Ahmad Qamar, Bilal Muhammad, et al. Bio⁃based active food packaging materials: Sustainable alternative to conventional petrochemical⁃based packaging materials[J]. Food Research International, 2020, 137: 109 625. |
44 | Maja Colnik, Hrncic Masa Knez, Mojca Skerget, et al. Biodegradable polymers, current trends of research and their applications, a review[J]Chemical Industry & Chemical Engineering Quarterly, 2020, 26(4): 401⁃418. |
45 | Akgün Mert, Başaran İhsan, Suner Salih C, et al. Geraniol and cinnamaldehyde as natural antibacterial additives for poly(lactic acid) and their plasticizing effects[J]. Journal of Polymer Engineering, 2020, 40(1): 38⁃48. |
46 | Pérez⁃Arauz A O, Aguilar⁃Rabiela A E, Vargas⁃Torres A, et al. Production and characterization of biodegradable films of a novel polyhydroxyalkanoate (PHA) synthesized from peanut oil[J]. Food Packaging and Shelf Life, 2019, 20, 100 297. |
47 | 彭 跃. 淀粉/PHA纳米复合膜的制备及性能研究[D].泰安:山东农业大学,2014. |
48 | 陈松岭,蒋一飞,巴 闯,等.生物改性聚乙烯醇可降解包膜材料的特征及其光谱特性[J].中国土壤与肥料,2017(4):154⁃160. |
CHEN S L, JIANG Y F, BA C, et al. Characteristics and spectral properties of biodegradable modified polyvinyl alcohol coated materials[J]. Soil and Fertilizer Sciences in China, 2017 (4): 154⁃160. | |
49 | Juan Pablo Correa, Molina Vanesa, Sanchez Mariana, et al. Improving ham shelf life with a polyhydroxybutyrate /polycaprolactone biodegradable film activated with nisin[J]. Food Packaging and Shelf Life, 2017, 11: 31⁃39. |
50 | 邬 强,王振华,郑旭荣,等.PBAT生物降解膜覆盖对绿洲滴灌棉花土壤水热及产量的影响[J].农业工程学报,2017,33(16):135⁃143. |
WU Q, WANG Z H, ZHENG X R, et al. Effects of biodegradation film mulching on soil temperature, moisture and yield of cotton under drip irrigation in typical oasis area[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(16): 135⁃143. | |
51 | 梁 栋,张华江,王 旭,等.超声改性对可食性壳聚糖⁃大豆分离蛋白复合膜的影响[J].食品工业科技,2014,35(19):49⁃53. |
LIANG D, ZANG H J, WANG X, et al. Effect of ultrasonic modification on edible chitosan⁃soy protein isolated membrane[J]. Science and Technology of Food Industry, 2014, 35(19): 49⁃53. | |
52 | Wei Zhang, Yang Xiaoliang, Li Cuiying, et al. Mechanochemical activation of cellulose and its thermoplastic polyvinyl alcohol ecocomposites with enhanced physicochemical properties[J]. Carbohydrate Polymers, 2011, 83(1): 257⁃263. |
53 | May Thu Soe, Pongjanyakul Thaned, Limpongsa Ekapol, et al. Films fabricated with native and ball‐milled modified glutinous rice starch: physicochemical and mucoadhesive properties[J]. Starch, 2021, 73, 2 000 012. |
54 | 张赟彬,王景文,刘笑宇,等.碱浸处理对壳聚糖膜性质的影响[J].上海应用技术学院学报(自然科学版),2014,14(4):286⁃290. |
ZHANG Y B, WANG J W, LIU X Y, et al. Effect of alkali leaching properties of chitosan films[J]. Journal of Technology, 2014(4): 286⁃290. | |
55 | Contardi Marco, Alfaro⁃Pulido Alejandro, Picone Pasquale, et al. Low molecular weight ε⁃caprolactone⁃p⁃coumaric acid copolymers as potential biomaterials for skin regeneration applications[J]. Plos One, 2019, 14 (4): e0 214 956. |
56 | Martelli⁃Tosi Milena, B G Assis Odílio, Silva Natália C, et al. Chemical treatment and characterization of soybean straw and soybean protein isolate/straw composite films[J]. Carbohydrate Polymers, 2017, 157: 512⁃520. |
57 | 潘 博,贾 雪,支朝晖,等.复合改性淀粉膜材料工艺优化与性能分析[J].现代食品科技,2020,36(9):156⁃163. |
PAN B, JIA X, ZHI Z H, et al. Process optimization and performance analysis of composite modified starch films[J]. Modern Food Science and Technology, 2020, 36(9): 156⁃163. | |
58 | 苏俊烽,程建军.酶改性淀粉/PVA可降解膜的研究[C]//黑龙江省农业工程学会2011学术年会. 哈尔滨:黑龙江省农业工程学会2011学术年会论文集,2011:130⁃136. |
59 | 董 爽,李晓宇,桑炜才,等.高压湿热法改性玉米醇溶蛋白膜的工艺优化及性能分析[J].食品工业科技,2021,42(16):207⁃212. |
DONG S, LI X Y, SANG W C, et al. Process optimization and performance analysis of modified zein film by high pressure heat⁃moisture (HPHM) treatment[J]. Science and Technology of Food Industry, 2021, 42(16): 207⁃212. | |
60 | 王丹丹. 海藻酸钠的化学改性及电纺纤维膜的制备与性能研究[D].青岛:青岛大学,2021. |
61 | 何 洋,黄雨洋,朱秀清.魔芋葡甘露聚糖基物理共混改性复合膜研究进展[J/OL].食品科学:1⁃17[2022⁃11⁃14]. |
HE Y, HUANG Y Y, ZHU X Q. Research progress of konjac glucomannan⁃based physically co⁃blended modified composite films[J/OL]. Food Science, 1⁃17[2022⁃11⁃14]. | |
62 | Daemi Hamed, Mashayekhi Maryam, Mohammad Pezeshki Modaress. Facile fabrication of sulfated alginate electrospun nanofibers[J]. Carbohydrate Polymers, 2018, 198: 481⁃485. |
63 | Mahsa Ensafi Avval, Peyman Najafi Moghaddam, Amir Reza Fareghi. Modification of starch by graft copolymerization: a drug delivery system tested for cephalexin antibiotic[J]. Starch‐Stärke, 2013, 65: 572⁃583. |
64 | Elsawy Moataz A., Kim Ki⁃Hyun, Park Jae⁃Woo, et al. Hydrolytic degradation of polylactic acid (PLA) and its composites[J]. Renewable and Sustainable Energy Reviews, 2017, 79: 1 346⁃1 352. |
65 | 薛腾遥,冯世超,汪称意,等.聚合物分离膜交联改性研究进展[J].膜科学与技术,2021,41(6):182⁃191,201. |
XUE T Y, FENG S C, WANG C Y, et al. Research progress of crosslinking modification for polymeric separation membranes[J]. Membrane Science and Technology, 2021, 41(6): 182⁃191,201. | |
66 | M C Azeredo Henriette, Waldron Keith W. Crosslinking in polysaccharide and protein films and coatings for food contact⁃a review[J].Trends in Food Science & Technology, 2016, 52: 109⁃122. |
67 | 刘成龙.改性大豆分离蛋白活性膜的制备及缓释规律研究[D].济南:齐鲁工业大学,2021. |
68 | Benbettaïeb Nasreddine, Gay Jean⁃Pierre, Karbowiak Thomas, et al. Tuning the functional properties of polysaccharide⁃protein bio⁃based edible films by chemical, enzymatic, and physical cross⁃linking[J]. Comprehensive Reviews in Food Science and Food Safety,2016,15(4): 739⁃752. |
69 | Li H, Zeng S, Luo X W, et al. Effects of degradable mulching film on soil temperature, seed germination and seedling growth of direct⁃seeded rice(oryza sativa l.)[J]. Applied Ecology And Environmental Research, 2020(6): 8 233⁃8 249. |
70 | 韩永俊,陈海涛,刘丽雪,等.水稻秸秆纤维地膜制造工艺参数优化[J].农业工程学报, 2011, 27(3): 242⁃247. |
HAN Y J, CHEN H T, LIU L X, et al. Optimization of technical parameters for making mulch from rice straw fiber[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(3): 242⁃247. | |
71 | 马彧博,马泽峰,敖李龙,等.柠檬酸渣可降解地膜的制备及其农用特性的研究[J].北京化工大学学报(自然科学版),2017,44(3):58⁃62. |
MA Y B, MA Z F, AO L L, et al. Preparation and properties of biodegradable mulching films based on citric acid fermentation residue[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2017, 44(3): 58⁃62. | |
72 | Scaffaro Roberto, Maio Andrea, Sutera Fiorenza, et al. Degradation and recycling of films based on biodegradable polymers: a short review[J]. Polymers, 2019, 11(4): 651. |
73 | Sohail Sarwar M, Ghaffar Abdul, Islam Atif, et al. Controlled drug release behavior of metformin hydrogen chloride from biodegradable films based on chitosan/poly(ethylene glycol) methyl ether blend[J]. Arabian Journal of Chemistry, 2020, 13(1): 393⁃403. |
74 | Jang Ji⁃Woong, Lee Jung⁃Seok, Jung Ui⁃Won, et al. In vivo evaluation of commercially available gel⁃type polyethylene glycol membrane for carrier of recombinant human bone morphogenetic protein-2[J]. Journal of Oral & Maxillofacial Surgery, 2017, 75(2): 297.e1⁃297.e13. |
75 | Cazón Patricia, Vázquez Manuel, Velazquez Gonzalo. Cellulose⁃glycerol⁃polyvinyl alcohol composite films for food packaging: Evaluation of water adsorption, mechanical properties, light⁃barrier properties and transparency[J]. Carbohydrate Polymers, 2018, 195: 432⁃443. |
76 | 赵 昊,杜先锋.纤维素膜对绿茶保鲜的影响[J].安徽农业大学学报, 2018, 45(5): 832⁃835. |
ZHAO H, DU X F. Influence of cellulose film on refreshment of green tea[J]. Journal of Anhui Agricultural University, 2018, 45(5): 832⁃835. | |
77 | Kavalenka M N, Hopf A, Schneider M, et al. Wood⁃based microhaired superhydrophobic and underwater superoleophobic surfaces for oil/water separation[J]. Rsc Advances, 2014, 4: 31 079⁃31 083. |
78 | 孟令晗.淀粉基发泡材料的制备与性能及防水性研究[D].广州:华南理工大学,2019. |
[1] | YANG Xu, FANG Jian, QIN Min, YU Lei. Preparation process optimization and characterization of chitosan/gellan gum bilayer films [J]. China Plastics, 2022, 36(11): 14-23. |
[2] | LI Guo, ZHU Huihao, MA Yulu, WANG Yu, JI Huajian, XIE Linsheng. Preparation and properties of microporous breathable films with high thermal conductivity [J]. China Plastics, 2022, 36(7): 14-20. |
[3] | CHEN Chenwei, ZHU Kexin, CHEN Lijun, YANG Shaohua, XIE Jin. Research Progress in Antifogging and Antibacterial Packaging Films and Its Application in Fresh Keeping of Fruits and Vegetables [J]. China Plastics, 2021, 35(10): 99-107. |
[4] | ZHU Wenyao, SHAO Weiguang, WANG Xinhua, LI Hua, YE Haimu, CAI Lihai. Application Status and Development of Heat Temperature⁃Resistant Separator Materials for Lithium⁃ion Batteries [J]. China Plastics, 2021, 35(3): 151-160. |
[5] | FAN Xiao-hong, CAI Chao-hui, WU Yao-gen, YE Shu-zhan, XU Bing. Research and Development of Separator for Lithium-ion Batteries [J]. China Plastics, 2008, 22(12): 11-15 . |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||