京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2025, Vol. 39 ›› Issue (7): 148-156.DOI: 10.19491/j.issn.1001-9278.2025.07.022
• Review • Previous Articles Next Articles
DONG Shengye, CHEN Xinggang(), WANG Qihao, YAO Yu, LI Ruoxuan, CHANG Jiabin, SONG Jiacheng
Received:
2024-08-19
Online:
2025-07-26
Published:
2025-07-22
CLC Number:
DONG Shengye, CHEN Xinggang, WANG Qihao, YAO Yu, LI Ruoxuan, CHANG Jiabin, SONG Jiacheng. Research progress in self⁃healing polymer materials in medical field[J]. China Plastics, 2025, 39(7): 148-156.
不同修复方式 | 形成的材料 | 机制 | 优点 | 缺点 | 参考文献 |
---|---|---|---|---|---|
微胶囊型自修复 | 聚(脲醛)微胶囊 | 丙烯酸在引发剂的作用下发生聚合反应 | 随着微胶囊尺寸和浓度的增加,材料的断裂韧性显著提高 | 制备工艺复杂 | [ |
新型低收缩牙科树脂 | 改性后的MCs与树脂基体紧密结合并形成微机械结 | 抗菌和自愈特性 | 兼容性有欠缺 | [ | |
牙科纳米复合材料 | 愈合剂被释放与BPO与其反应后进行自修复 | 耐老化,自愈性能稳定,对细胞活力和毒性影响轻微 | 使用次数有限 | [ | |
脉管型自修复 | 聚丙烯塑料管 | 压力传感器检测到损伤,从而触发从外部储存器向损伤部位输送修复剂 | 修复覆盖面积大 | 当管道间距大于500 μm时修复效率较低 | [ |
环氧树脂纳米补强剂 | 发泡剂起作用使内部压力增加,修复剂在破裂后很快就会从容器中喷涌而出 | 愈合效率得到提高 | 互连性的增加导致聚合物链流动性因范德华力而降低 | [ | |
可逆共价键自修复 | 纤维素水凝胶 | 酮酯型酰腙键快速交换 | 凝胶化时间缩,并在生理环境达到更高的自愈率 | 交联密度较高使平衡溶胀率降低,其失重率高度依赖于 pH 值 | [ |
抗菌透明质酸水凝胶 | 动态酰基腙键、静电相互作用、二硫键和亚胺键的重新建立 | 快速固化并具有优异的吸液能力,对大肠杆菌和金黄色葡萄球菌具有显著抗菌效果 | 对环境要求较高 | [ | |
热可逆纳米纤维素水凝胶 | DA/rDA反应具有可逆性 | 具有良好的热可逆性 | 有温度限制 | [ | |
可逆非共价键自修复 | 壳聚糖⁃香豆素水凝胶 | 多个氢键之间的相互叠加和协同作用 | 具有pH响应性、可注射性和高效自愈能力 | 力学性能不足,降解速度控制困难 | [ |
动态纳米复合水凝胶 | 动态共价键和非共价相互作用的多重可逆相互作用的协同作用 | 具有出色的力学性能 | 制备过程复杂,纳米粒子的分布可能不均匀 | [ |
不同修复方式 | 形成的材料 | 机制 | 优点 | 缺点 | 参考文献 |
---|---|---|---|---|---|
微胶囊型自修复 | 聚(脲醛)微胶囊 | 丙烯酸在引发剂的作用下发生聚合反应 | 随着微胶囊尺寸和浓度的增加,材料的断裂韧性显著提高 | 制备工艺复杂 | [ |
新型低收缩牙科树脂 | 改性后的MCs与树脂基体紧密结合并形成微机械结 | 抗菌和自愈特性 | 兼容性有欠缺 | [ | |
牙科纳米复合材料 | 愈合剂被释放与BPO与其反应后进行自修复 | 耐老化,自愈性能稳定,对细胞活力和毒性影响轻微 | 使用次数有限 | [ | |
脉管型自修复 | 聚丙烯塑料管 | 压力传感器检测到损伤,从而触发从外部储存器向损伤部位输送修复剂 | 修复覆盖面积大 | 当管道间距大于500 μm时修复效率较低 | [ |
环氧树脂纳米补强剂 | 发泡剂起作用使内部压力增加,修复剂在破裂后很快就会从容器中喷涌而出 | 愈合效率得到提高 | 互连性的增加导致聚合物链流动性因范德华力而降低 | [ | |
可逆共价键自修复 | 纤维素水凝胶 | 酮酯型酰腙键快速交换 | 凝胶化时间缩,并在生理环境达到更高的自愈率 | 交联密度较高使平衡溶胀率降低,其失重率高度依赖于 pH 值 | [ |
抗菌透明质酸水凝胶 | 动态酰基腙键、静电相互作用、二硫键和亚胺键的重新建立 | 快速固化并具有优异的吸液能力,对大肠杆菌和金黄色葡萄球菌具有显著抗菌效果 | 对环境要求较高 | [ | |
热可逆纳米纤维素水凝胶 | DA/rDA反应具有可逆性 | 具有良好的热可逆性 | 有温度限制 | [ | |
可逆非共价键自修复 | 壳聚糖⁃香豆素水凝胶 | 多个氢键之间的相互叠加和协同作用 | 具有pH响应性、可注射性和高效自愈能力 | 力学性能不足,降解速度控制困难 | [ |
动态纳米复合水凝胶 | 动态共价键和非共价相互作用的多重可逆相互作用的协同作用 | 具有出色的力学性能 | 制备过程复杂,纳米粒子的分布可能不均匀 | [ |
[1] | Sousa A C, Veiga A, Maurício A C, et al. Assessment of the environmental impacts of medical devices: a review[J]. Environment, Development and Sustainability, 2020, 23(7): 9 641⁃9 666. |
[2] | Seo G, Park S, Lee M. How to calculate the life cycle of high⁃risk medical devices for patient safety[J]. Frontiers in Public Health, 2022, 10: 989320. |
[3] | Neuzner J. The mismatch between patient life expectancy and the service life of implantable devices in current cardioverter⁃defibrillator therapy: a call for larger device batteries[J]. Clinical Research in Cardiology, 2015, 104(6): 456⁃460. |
[4] | Shields Y, De Belie N, Jefferson A, et al. A review of vascular networks for self⁃healing applications[J]. Smart Materials and Structures, 2021, 30(6): 063001. |
[5] | Karvinen J, Kellomäki M. 3D⁃bioprinting of self⁃healing hydrogels[J]. European Polymer Journal, 2024, 209: 112864. |
[6] | Zhu J, Chen J, An Z, et al. Photocuring 3D printable self⁃healing polymers[J]. European Polymer Journal, 2023, 199: 112471. |
[7] | 本刊综合. 自修复材料:谁说破镜不能重圆[J]. 今日科技, 2023(5): 62⁃63. |
[8] | 叶三男, 王 培, 孙阳超, 等. 微胶囊填充型自修复涂层材料研究进展[J]. 表面技术, 2016, 45(6): 91⁃99. |
YE S N, WANG P, SUN Y C, et al. Research advances in microcapsuled self⁃healing coatings materials[J]. Surface Technology, 2016, 45(6): 91⁃99. | |
[9] | Ning K, Loomans B, Yeung C, et al. Influence of microcapsule parameters and initiator concentration on the self⁃healing capacity of resin⁃based dental composites[J]. Dental Materials, 2021, 37(3): 403⁃412. |
[10] | Zhang X, Zhang J, Zhang T, et al. Novel low⁃shrinkage dental resin containing microcapsules with antibacterial and self⁃healing properties[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 148: 106212. |
[11] | Ravandi R, Zeinali Heris S, Hemmati S, et al. Effects of chitosan and TiO2 nanoparticles on the antibacterial property and ability to self⁃healing of cracks and retrieve mechanical characteristics of dental composites[J]. Heliyon, 2024, 10(6): e27734. |
[12] | 赵 辉, 胡 滨, 罗兆成. 自修复材料: “破镜能重圆”[N]. 解放军报, 2022⁃03⁃18(11) |
[13] | Zhu Y, Ye X J, Rong M Z, et al. Self⁃healing glass fiber/epoxy composites with polypropylene tubes containing self⁃pressurized epoxy and mercaptan healing agents[J]. Composites Science and Technology, 2016, 135: 146⁃152. |
[14] | Bekas D G, Baltzis D, Paipetis A S. Nano⁃reinforced polymeric healing agents for vascular self⁃repairing composites[J]. Materials & Design, 2017, 116: 538⁃544. |
[15] | 杨志鹏, 李红强, 赖德辉, 等. 本征型自愈合聚合物的研究进展[J]. 弹性体, 2019, 29(6): 80⁃86. |
YANG Z P, LI H Q, LAI D H, et al. Research progress of intrinsic self⁃healing polymers[J]. China Elastomerics, 2019, 29(6): 80⁃86. | |
[16] | Jiang X, Yang X, Yang B, et al. Highly self⁃healable and injectable cellulose hydrogels via rapid hydrazone linkage for drug delivery and 3D cell culture[J]. Carbohydrate Polymers, 2021, 273: 118547. |
[17] | Yang K, Yang J, Chen R, et al. Antibacterial hyaluronic acid hydrogels with enhanced self⁃healing properties via multiple dynamic bond crosslinking[J]. International Journal of Biological Macromolecules, 2024, 256: 128320. |
[18] | Kramer R K, Belgacem M N, Carvalho A J F, et al. Thermally reversible nanocellulose hydrogels synthesized via the furan/maleimide Diels⁃Alder click reaction in water[J]. International Journal of Biological Macromolecules, 2019, 141: 493⁃498. |
[19] | Shi H, Ma D, Wu D, et al. A pH⁃responsive, injectable and self⁃healing chitosan⁃coumarin hydrogel based on Schiff base and hydrogen bonds[J]. International Journal of Biological Macromolecules, 2024, 255: 128122. |
[20] | Gao L T, Chen Y M, Aziz Y, et al. Tough, self⁃healing, and injectable dynamic nanocomposite hydrogel based on gelatin and sodium alginate[J]. Carbohydrate Polymers, 2024, 330: 121812. |
[21] | 高 飞. 3D打印高强度生物杂化梯度水凝胶支架及其在骨软骨一体化修复中的应用[D]. 天津: 天津大学, 2018. |
[22] | Du J, Wang H, Huang Z, et al. Construction and mechanism study of lignin⁃based polyurethane with high strength and high self⁃healing properties[J]. International Journal of Biological Macromolecules, 2023, 248: 125925. |
[23] | 邵长优. 具有强韧自愈性能的纳米纤维素复合水凝胶制备和应用研究[D]. 北京: 北京林业大学, 2020. |
[24] | Wang Z, Xu L, Liu W, et al. Tough, self⁃healing, adhesive double network conductive hydrogel based on gelatin⁃polyacrylamide covalently bridged by oxidized sodium alginate for durable wearable sensors[J]. International Journal of Biological Macromolecules, 2024, 276: 133802. |
[25] | Mao H, Li H, He X, et al. A self⁃healing and recyclable polyurethane composite film for durable pH responsive coating[J]. European Polymer Journal, 2024, 210: 112984. |
[26] | Le K, Sun X, Chen J, et al. Stretchable, self⁃healing, biocompatible, and durable ionogel for continuous wearable strain and physiological signal monitoring[J]. Chemical Engineering Journal, 2023, 471: 144675. |
[27] | Qu M, Hu L, Wang S, et al. Multifunctional hierarchical electronic skins: unveiling self⁃repairing mechanisms and advancements in sensing and shielding performance[J]. Composites Science and Technology, 2024, 256: 110769. |
[28] | Banerjee S L, Das S, Bhattacharya K, et al. Ag NPs incorporated self⁃healable thermoresponsive hydrogel using precise structural “Interlocking” complex of polyelectrolyte BCPs: a potential new wound healing material[J]. Chemical Engineering Journal, 2021, 405: 126436. |
[29] | Qu J, Zhao X, Liang Y, et al. Antibacterial adhesive injectable hydrogels with rapid self⁃healing,extensibility and compressibility as wound dressing for joints skin wound healing[J]. Biomaterials, 2018, 183: 185⁃199. |
[30] | Qiao L, Liang Y, Chen J, et al. Antibacterial conductive self⁃healing hydrogel wound dressing with dual dynamic bonds promotes infected wound healing[J]. Bioactive Materials, 2023, 30: 129⁃141. |
[31] | Zhou Z, Wang Z, Liu X, et al. Pectin⁃based self⁃healing hydrogel through acylhydrazone connection for controlled drug release and enhanced tumor therapy[J]. Journal of Drug Delivery Science and Technology, 2022, 70: 103210. |
[32] | Aizik G, Ostertag⁃Hill C A, Chakraborty P, et al. Injectable hydrogel based on liposome self⁃assembly for controlled release of small hydrophilic molecules[J]. Acta Biomaterialia, 2024, 183: 101⁃110. |
[33] | Li D Q, Wang S Y, Meng Y Y, et al. Fabrication of self⁃healing pectin/chitosan hybrid hydrogel via Diels⁃Alder reactions for drug delivery with high swelling property, pH⁃responsiveness, and cytocompatibility[J]. Carbohydrate Polymers, 2021, 268: 118244. |
[34] | Zhang H, Wang Z, Wang Y, et al. Biomaterials for interbody fusion in bone tissue engineering[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 900992. |
[35] | Li J, Zhang J. Effect of composite conjugated materials on tissue healing during exercise rehabilitation training[J]. Frontiers in Chemistry, 2023, 11: 1279463. |
[36] | Khazani Y, Rafiee E, Samadi A, et al. Alginate⁃PVDF piezoelectric hydrogel containing calcium copper titanatehydroxyapatite as a self⁃powered scaffold for bone tissue engineering and energy harvesting[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 687: 133537. |
[37] | Li R, Zhou C, Chen J, et al. Synergistic osteogenic and angiogenic effects of KP and QK peptides incorporated with an injectable and self⁃healing hydrogel for efficient bone regeneration[J]. Bioactive Materials, 2022, 18: 267⁃283. |
[38] | Wistrand C, Westerdahl E, Sundqvist A⁃S. Effectiveness of reducing bacterial air contamination when covering sterile goods in the operating room setting: a systematic review and meta⁃analysis[J]. Journal of Hospital Infection, 2024, 145: 107⁃117. |
[39] | Taha A M, Abouelmagd K, Omar M M, et al. The diagnostic utility of heparin⁃binding protein among patients with bacterial infections: a systematic review and meta⁃analysis[J]. BMC Infectious Diseases, 2024, 24(1): 150. |
[40] | Chen H, Xiang Z, Zhang T. Heparinized self⁃healing polymer coating with inflammation modulation for blood⁃contacting biomedical devices[J]. Acta Biomaterialia, . |
[41] | Tao J, Dong L, Wu Y, et al. Fabrication of room temperature self⁃healing, robust superhydrophobic coatings via spraying dual cross⁃linking supramolecular silicone polymer/SiO2 composite[J]. Composites Part B: Engineering, 2024, 273: 111245. |
[42] | Zhou C, Zhou J, Ma X, et al. Robust anti⁃infective multilayer coatings with rapid self⁃healing property[J]. Materials Science and Engineering: C, 2021, 121: 111828. |
[1] | LIU Lanbin, LIU Zhaowei, SUN Jishu, GUO Yanfang, PU Xiatian. Study on durability of asphalt modified by HVA/modified montmorillonite/SBS high viscosity composites [J]. China Plastics, 2025, 39(8): 19-25. |
[2] | MA Hailong, DAI Mingxin. Research progress in applications of recycled plastic aggregates in cement concrete [J]. China Plastics, 2025, 39(6): 89-99. |
[3] | ZHANG Zheng, LI Fangquan, LI Jie, LI Changjin, GUO Min, WANG Ying. Research progress in polyamide and its applications for medical and sanitary materials [J]. China Plastics, 2024, 38(5): 113-119. |
[4] | WANG Han, LIANG Jinhua, GAO Zhenguo, JIANG Wei, ZHOU Hao. Mechanical properties and repair efficiency of self⁃repairing microencapsulated epoxy resin [J]. China Plastics, 2024, 38(5): 40-46. |
[5] | FENG Jingming. Design and applications of polyurethane composite isolator in power equipment [J]. China Plastics, 2024, 38(5): 73-77. |
[6] | LI Youshuang, JIN Qiushuo, TANG Jingyue, JIA Meng, XU Bo. Study on recyclable and reusable flame⁃retardant bismaleimide resin based on covalent adaptive network [J]. China Plastics, 2024, 38(11): 57-63. |
[7] | DENG Weijuan, WANG Qiao, HU Wei, YANG Fan, HUI Zhan. Study on formulation of adhesive for retard⁃bonding prestressed strands [J]. China Plastics, 2023, 37(9): 51-56. |
[8] | JIN Qingping, LIU Yundie. Research progress in durability of fiber⁃reinforced⁃polymer⁃confined concrete columns [J]. China Plastics, 2023, 37(2): 121-128. |
[9] | WANG Yao, XIAO Yuan, CHENG Chuanrui, ZHAO Peng, ZHANG Chen, XIONG Daoying, JIANG Chuanxia, ZHANG He. Study on practical performance of self⁃healing anticorrosion coating based on microencapsulated epoxy⁃amine chemistry [J]. China Plastics, 2023, 37(12): 7-13. |
[10] | SUN Jing, XIONG Faqiang, DENG Ruhui, TAO Yaxian, CHEN Xinggang. Research progress in intelligent polymeric materials for medical monitoring [J]. China Plastics, 2023, 37(10): 40-49. |
[11] | . Research progress in intelligent polymeric materials for medical monitoring [J]. , 2023, 37(10): 40-49. |
[12] | CHEN Liang, ZHANG Pingbo, JIANG Pingping, BAO Yanmin, GAO Xuewen, XIA Jialiang. Preparation and properties of self⁃healing waterborne polyurethane based on disulfide bonds [J]. China Plastics, 2022, 36(6): 46-53. |
[13] | LUO Jun, HUANG Hongsheng, YE Xiaolan, REN Jun, NIE Shengqiang, WANG Yi, ZHANG Chunmei, LIU Yuan. Preparation and self⁃healing performance of pyridine⁃containing polyurethane [J]. China Plastics, 2022, 36(5): 47-52. |
[14] | LI Yushan, LI Jie. Research progress in durable super⁃hydrophobic surface based on PDMS [J]. China Plastics, 2022, 36(3): 167-176. |
[15] | ZHANG Ting, JIN Qingping, SONG Shie, CAO Nannan, DENG Siyuan. A review on durability and life prediction of FRP bars under different corrosive environments [J]. China Plastics, 2022, 36(3): 75-81. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||