京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2021, Vol. 35 ›› Issue (10): 68-75.DOI: 10.19491/j.issn.1001-9278.2021.10.012
• Materials and Properties • Previous Articles Next Articles
LIU Zili1(), WU Chenying1, LIU Xiqin1, WEI Dongbo1, BAO Jinfang2, ZHU Jun2, CHEN Xinxiang3
Received:
2021-03-28
Online:
2021-10-26
Published:
2021-10-27
CLC Number:
LIU Zili, WU Chenying, LIU Xiqin, WEI Dongbo, BAO Jinfang, ZHU Jun, CHEN Xinxiang. Microstructure and Flame Retardancy of EVA/PE⁃LD/ATH Compounds Toughened with Whiskers[J]. China Plastics, 2021, 35(10): 68-75.
晶须名称 | 型号 | 化学式 | 表观密度/g·cm-3 | 长度/μm | 直径/μm | 长径比 |
---|---|---|---|---|---|---|
MHSH | NP?YW1 | MgSO4?5Mg(OH)2?3H2O | 2.30 | 10~60 | 1.0 | 30~40 |
ABW | NP?BW2 | 9Al2O3?2B2O3 | 2.93 | 15~60 | 0.3~2 | 20~80 |
CSW | NP?SO4 | CaSO4?0.5H2O | 2.69 | 10~300 | 1~10 | 5~40 |
晶须名称 | 型号 | 化学式 | 表观密度/g·cm-3 | 长度/μm | 直径/μm | 长径比 |
---|---|---|---|---|---|---|
MHSH | NP?YW1 | MgSO4?5Mg(OH)2?3H2O | 2.30 | 10~60 | 1.0 | 30~40 |
ABW | NP?BW2 | 9Al2O3?2B2O3 | 2.93 | 15~60 | 0.3~2 | 20~80 |
CSW | NP?SO4 | CaSO4?0.5H2O | 2.69 | 10~300 | 1~10 | 5~40 |
试样名称 | ATH/份 | MHSH/份 | ABW/份 | CSW/份 | EVA/PE?LD/PE?g?MA/份 | 抗氧剂1010/份 | 硅酮母粒/份 | 黑色母粒/份 |
---|---|---|---|---|---|---|---|---|
SW1 | 54 | 27 | 0 | 0 | 100 | 0.5 | 2 | 2 |
SW2 | 54 | 0 | 27 | 0 | 100 | |||
SW3 | 54 | 0 | 0 | 27 | 100 | |||
CW1 | 54 | 13.5 | 13.5 | 0 | 100 | |||
CW2 | 54 | 13.5 | 0 | 13.5 | 100 | |||
CW3 | 54 | 13.5 | 6.75 | 6.75 | 100 |
试样名称 | ATH/份 | MHSH/份 | ABW/份 | CSW/份 | EVA/PE?LD/PE?g?MA/份 | 抗氧剂1010/份 | 硅酮母粒/份 | 黑色母粒/份 |
---|---|---|---|---|---|---|---|---|
SW1 | 54 | 27 | 0 | 0 | 100 | 0.5 | 2 | 2 |
SW2 | 54 | 0 | 27 | 0 | 100 | |||
SW3 | 54 | 0 | 0 | 27 | 100 | |||
CW1 | 54 | 13.5 | 13.5 | 0 | 100 | |||
CW2 | 54 | 13.5 | 0 | 13.5 | 100 | |||
CW3 | 54 | 13.5 | 6.75 | 6.75 | 100 |
试样 | T0/°C | Tp/°C | R/%·min-1 | C/% | C800 ℃/% | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Tp1 | Tp2 | Tp3 | R1 | R2 | R3 | C1 | C 2 | C 3 | |||
SW1 | 330 | 329 | 364 | 489 | -3.98 | -3.68 | -25.75 | 95.23 | 90.65 | 53.32 | 31.6 |
SW2 | 338 | 334 | 374 | 489 | -3.40 | -2.96 | -25.98 | 95.70 | 90.74 | 53.15 | 34.8 |
SW3 | 329 | 329 | 374 | 489 | -3.15 | -2.87 | -25.84 | 94.94 | 90.14 | 53.13 | 34.1 |
CW1 | 326 | 329 | 374 | 484 | -4.03 | -3.44 | -21.67 | 94.35 | 88.07 | 51.92 | 31.0 |
CW2 | 330 | 329 | 374 | 489 | -3.98 | -3.10 | -25.10 | 95.53 | 89.83 | 53.55 | 32.2 |
CW3 | 330 | 329 | 379 | 489 | -3.77 | -3.24 | -25.57 | 95.25 | 88.55 | 54.19 | 32.7 |
试样 | T0/°C | Tp/°C | R/%·min-1 | C/% | C800 ℃/% | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Tp1 | Tp2 | Tp3 | R1 | R2 | R3 | C1 | C 2 | C 3 | |||
SW1 | 330 | 329 | 364 | 489 | -3.98 | -3.68 | -25.75 | 95.23 | 90.65 | 53.32 | 31.6 |
SW2 | 338 | 334 | 374 | 489 | -3.40 | -2.96 | -25.98 | 95.70 | 90.74 | 53.15 | 34.8 |
SW3 | 329 | 329 | 374 | 489 | -3.15 | -2.87 | -25.84 | 94.94 | 90.14 | 53.13 | 34.1 |
CW1 | 326 | 329 | 374 | 484 | -4.03 | -3.44 | -21.67 | 94.35 | 88.07 | 51.92 | 31.0 |
CW2 | 330 | 329 | 374 | 489 | -3.98 | -3.10 | -25.10 | 95.53 | 89.83 | 53.55 | 32.2 |
CW3 | 330 | 329 | 379 | 489 | -3.77 | -3.24 | -25.57 | 95.25 | 88.55 | 54.19 | 32.7 |
试样 | LOI/% | 点燃时间/s | 达到热释放速率 峰值的时间/s | 总烟释放量/ m2·m-2 | 热释放速率峰值/kW·m-2 | 总热释放量/MJ·m-2 | 火灾性能指数/ m2·s·kW-1 |
---|---|---|---|---|---|---|---|
SW1 | 26.3 | 46 | 115 | 178.2 | 397.5 | 24.1 | 0.116 |
SW2 | 25.3 | 36 | 105 | 200.3 | 450.3 | 24.0 | 0.080 |
SW3 | 26.4 | 50 | 110 | 210.2 | 418.0 | 24.1 | 0.120 |
CW1 | 25.6 | 40 | 110 | 194.1 | 420.6 | 23.4 | 0.095 |
CW2 | 25.2 | 46 | 110 | 190.2 | 437.2 | 23.9 | 0.105 |
CW3 | 26.8 | 60 | 130 | 187.2 | 364.4 | 20.8 | 0.165 |
试样 | LOI/% | 点燃时间/s | 达到热释放速率 峰值的时间/s | 总烟释放量/ m2·m-2 | 热释放速率峰值/kW·m-2 | 总热释放量/MJ·m-2 | 火灾性能指数/ m2·s·kW-1 |
---|---|---|---|---|---|---|---|
SW1 | 26.3 | 46 | 115 | 178.2 | 397.5 | 24.1 | 0.116 |
SW2 | 25.3 | 36 | 105 | 200.3 | 450.3 | 24.0 | 0.080 |
SW3 | 26.4 | 50 | 110 | 210.2 | 418.0 | 24.1 | 0.120 |
CW1 | 25.6 | 40 | 110 | 194.1 | 420.6 | 23.4 | 0.095 |
CW2 | 25.2 | 46 | 110 | 190.2 | 437.2 | 23.9 | 0.105 |
CW3 | 26.8 | 60 | 130 | 187.2 | 364.4 | 20.8 | 0.165 |
试样 | 介电强度/MV·m-1 | 体积电阻率/Ω·m |
---|---|---|
SW1 | 33.4 | 5.80×1012 |
SW2 | 29.3 | 4.26×1012 |
SW3 | 25.7 | 3.36×1012 |
CW1 | 30.7 | 5.30×1012 |
CW2 | 31.5 | 6.37×1012 |
CW3 | 33.6 | 9.01×1012 |
试样 | 介电强度/MV·m-1 | 体积电阻率/Ω·m |
---|---|---|
SW1 | 33.4 | 5.80×1012 |
SW2 | 29.3 | 4.26×1012 |
SW3 | 25.7 | 3.36×1012 |
CW1 | 30.7 | 5.30×1012 |
CW2 | 31.5 | 6.37×1012 |
CW3 | 33.6 | 9.01×1012 |
1 | KIYOAKIO M, TARO F, SHINYA N. Development of Environmentally⁃friendly Electric Wires for Household and Electro⁃appliances[J]. SEI Technical Review, 2002, 54(13): 80⁃85. |
2 | 吴晨颖.含晶须阻燃剂对EVA/LDPE复合材料性能的影响[D].南京:南京航空航天大学,2020. |
3 | BAHATTAB M A, JAROSLAV M, BASFAR A A, et al. Cross⁃linked Poly (ethylene vinyl acetate) (EVA)/Low density Polyethylene (LDPE)/Metal Hydroxides Composites for Wire and Cable Applications[J]. Polymer Bulletin, 2010, 64(6): 569⁃580. |
4 | LAOUTID F, BONNAUD L, ALEXANDRE M. New Prospects in Flame Retardant Polymer Materials: From Fundamentals to Nanocomposites[J]. Materials Science and Engineering R:Reports, 2009, 63: 100⁃125. |
5 | CAMINO G, MAFFEZZOLI A, BRAGLIA M, et al. Effect of Hydroxides and Hydroxycarbonate Structure on Fire Retardant Effectiveness and Mechanical Properties in Ethylene⁃vinyl Acetate Copolymer[J]. Polymer Degradation & Stability, 2001, 74(3): 457⁃464. |
6 | YEN Y Y, WANGA H T. Synergistic Flame Retardant Effect of Metal Hydroxide and Nanoclay in EVA Composites[J]. Polymer Degradation & Stability, 2012, 97(6): 863⁃869. |
7 | MASOOMI M , BAGHERI R, AHMADKHANBEIGI L, et al. Effect of OMMTs on Flame Retardancy and Thermal Stability of Poly (ethylene⁃co⁃vinyl acetate)/LDPE/Magnesium Hydroxide Composites[J]. Journal of Applied Polymer Science, 2014, 131(13): 40 446⁃40 452. |
8 | 张清辉, 郑水林, 张 强, 等. 氢氧化镁/氢氧化铝复合阻燃剂的制备及其在EVA材料中的应用[J].北京科技大学学报, 2007, 29(10): 1 027⁃1 030. |
ZHANG Q H, ZHENG S L, ZHANG Q, et al. Preparation and Application of Mg(OH)2⁃coated Al(OH)3 Composite Flame⁃retardant[J]. Journal of University of Science and Technology Beijing, 2007, 29(10): 1 027⁃1 030. | |
9 | LIU Z L, WU C Y, LIU X Q, et al. Flammability and Mechanical Properties of EVA/LDPE Blended with MHSH Whiskers and ATH[J]. Materials Research Express, 2019, 6(9): 095319. |
10 | LU H D, HU Y, YANG L, et al. Study of the Fire Performance of Magnesium Hydroxide Sulfate Hydrate Whisker Flame Retardant Polyethylene[J]. Macromolecular Materials & Engineering, 2004, 289(11): 984⁃989. |
11 | KIM E S, KIM Y C, PARK J, et al. Mechanical Properties and Flame Retardancy of Surface Modified Magnesium Oxysulfate(5Mg(OH)2·MgSO4·3H2O) Whisker for Polypropylene Composites[J]. Journal of Materiomics, 2018, 4(2): 149⁃156. |
12 | 彭 真. 碱式硫酸镁晶须增强导热阻燃聚丙烯的研究[D].广州:华南理工大学, 2015. |
13 | 吴强华, 唐龙祥, 瞿保钧, 等. 碱式硫酸镁晶须阻燃乙烯⁃醋酸乙烯酯共聚物的研究[J]. 功能高分子学报, 2005, 18(2): 255⁃259. |
WU Q H, TANG L X, QU B J, et al. Studies on Magnesium Sulfate Whisker Flame Retarded Poly(ethylene⁃co⁃vinyl acetate)[J]. Journal of Functional Polymers, 2005, 18(2): 255⁃259. | |
14 | LIU B, ZHANG Y, WAN C, et al. Thermal Stability, Flame Retardancy and Rheological Behavior of ABS Filled with Magnesium Hydroxide Sulfate Hydrate Whisker[J]. Polymer Bulletin, 2007, 58(4): 747⁃755. |
15 | FANG S L, HU Y, SONG L, et al. Mechanical Properties, Fire Performance and Thermal Stability of Magnesium Hydroxide Sulfate Hydrate Whiskers Flame Retardant Silicone Rubber[J]. Journal of Materials Science, 2008, 43(3): 1 057⁃1 062. |
16 | 杨 勇, 马晓雄, 何 斌, 等. 镁盐晶须原位复合酚醛泡沫制备及其性能研究[J]. 中国塑料, 2006, 20(9): 37⁃40. |
YANG Y, MA X X, HE B, et al. Preparation of Magnesium Hydroxide Sulfate Whisker/Phenolic Foam Composite by In⁃Situ Polymerization and Its Properties[J]. China Plastics, 2006, 20(9): 37⁃40. | |
17 | ZHANG X Y, ZHANG X J, HUANG Z L, et al. Hybrid Effects of Zirconia Nanoparticles with Aluminum Borate Whiskers on Mechanical Properties of Denture Base Resin PMMA[J]. Dental Materials Journal, 2014, 33(1): 141⁃146. |
18 | 徐兆瑜. 晶须的研究和应用新进展[J]. 化工技术与开发,2005,34(2):11⁃17. |
XU Z Y. Research Progress of Whisker And its Application[J]. Technology & Development of Chemical Industry,2005,34(2):11⁃17. | |
19 | LU Y, LI X, WU C, et al. Comparison between Polyether Titanate and Commercial Coupling Agents on the Properties of Calcium Sulfate Whisker/poly(vinyl chloride) Composites[J]. Journal of Alloys and Compounds, 2018, 750: 197⁃205. |
20 | CUI J, CAI Y, YUAN W, et al. Preparation of a Crosslinked Chitosan Coated Calcium Sulfate Whisker and Its Reinforcement in Polyvinyl Chloride[J]. Journal of Materials Science & Technology, 2016, 32(8): 745⁃752. |
[1] | FENG Kai, LI Yongqing, MA Xiuqing, HAN Ying. Research progress and application in toughening modification of polyoxymethylene [J]. China Plastics, 2022, 36(7): 157-164. |
[2] | SONG Yinbao, YANG Jianjun, LI Chuanmin. Study on properties and manufacturing precision of PDMS/SiC functionally gradient composites [J]. China Plastics, 2022, 36(7): 30-36. |
[3] | LI Jinfeng, LIANG Zhuoen, PENG Xinlong. Properties of unsaturated polyester resin composites modified with intumescent flame retardant and alu minum diethyl phosphate [J]. China Plastics, 2022, 36(6): 116-123. |
[4] | YANG Xiaolong, CHEN Wenjing, LI Yongqing, YAN Xiaokun, WANG Xiulei, XIE Pengcheng, MA Xiuqing. Research progress in polymer/graphene conductive composites [J]. China Plastics, 2022, 36(6): 165-173. |
[5] | SUN Qi, GAO Xing, CUI Xuemei, LIAN Huiqin, CUI Xiuguo, WANG Xiaodong. Research progress in development and applications of black phosphorene for flame retardancy of polymers [J]. China Plastics, 2022, 36(5): 133-139. |
[6] | WANG Ke, LONG Chunguang. Mechanical and tribological properties of ultra⁃high molecular weight polyethylene/sepiolite fiber composites [J]. China Plastics, 2022, 36(5): 19-23. |
[7] | CHEN Sheng, LIANG Yingchao, WU Fangjuan, FANG Hui, FAN Xinfeng, CHEN Hui, WANG Yonggang. Preparation and interfacial modification of polyamide 6/bidirectional warp⁃knitted glass fiber composites [J]. China Plastics, 2022, 36(5): 24-28. |
[8] | YANG Musen, QIAN Lijun, WANG Jingyu, ZHAO Zhen, WANG Guangyu, XIN Xiaohua. Synergistic effect of triphenyl phosphate and methyloctabromoether on flame retardancy of polystyrene [J]. China Plastics, 2022, 36(5): 36-42. |
[9] | LIU Wen, SHI Wenzhao, LIU Jinshu, LU Shaofeng, ZHOU Hongjuan. Research progress in electro⁃active shape memory composite materials [J]. China Plastics, 2022, 36(4): 175-189. |
[10] | RUAN Fangtao, XIA Chenglong, ZHANG Baogen, CAO Ye, LIU Zhi, XU Zhenzhen, ZHANG Jincao. Axial compressive properties of aramid⁃coated carbon⁃fiber⁃reinforced epoxy resins [J]. China Plastics, 2022, 36(4): 19-23. |
[11] | PENG Bo, XIAO Yunbin, GU Jiabao, CHEN Zijun, TANG Yanhuang, ZHU Gang, XU Huanxiang. Research progress in preparation and properties of polymer/graphene composites [J]. China Plastics, 2022, 36(4): 190-197. |
[12] | SONG Lijian, ZHANG Youchen, ZUO Xiahua, ZHANG Zhenghe, AN Ying, YANG Weimin, TAN Jing, CHENG Lisheng. Research progress on interfacial thermal transport controlled by self⁃assembled monolayers [J]. China Plastics, 2022, 36(4): 60-69. |
[13] | HE Yi, ZHAO Guanghui. Research progress in repairing and reinforcement of oil and gas pipeline with composites [J]. China Plastics, 2022, 36(4): 70-82. |
[14] | XIE Yu, WANG Limei, QI Bin. Preparation and properties of crosslinked chitosan/montmorillonite composite films [J]. China Plastics, 2022, 36(3): 58-63. |
[15] | LIU Yankuan, GU Zichen, WANG Zhiping. Preparation technology and development trend of continuous⁃fiber⁃reinforced thermoplastic prepregs [J]. China Plastics, 2022, 36(2): 172-181. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||