京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2022, Vol. 36 ›› Issue (4): 70-82.DOI: 10.19491/j.issn.1001-9278.2022.04.012
• Processing and Application • Previous Articles Next Articles
Received:
2021-10-29
Online:
2022-04-26
Published:
2022-04-24
CLC Number:
HE Yi, ZHAO Guanghui. Research progress in repairing and reinforcement of oil and gas pipeline with composites[J]. China Plastics, 2022, 36(4): 70-82.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plaschina.com.cn/EN/10.19491/j.issn.1001-9278.2022.04.012
参考文献 | 管道 | 修复层 | 主要研究 方法 | 修复效果评价 | ||
---|---|---|---|---|---|---|
管材/直径/壁厚 | 缺陷(形状/尺寸) | 材质(基体/纤维) | 尺寸(厚度/轴向长度) | |||
[ | Q235/426 mm /8 mm | 矩形/长宽深为58.2、1、4.6 mm | -/碳纤维 | 5、1 mm/300 mm | 内压 实验 | 修复区应力为未修复处的78.9 % |
[ | N80Q/177.8 mm/10.36 mm | 环状/长度 200 mm,深度 0~7 mm | 环氧树脂/碳纤维 | 9 mm/500 mm | 内压 实验 | 深度分别为5、6、7 mm的缺陷管道,修复后的爆破压力达到无损管道的100 %、90.1 %和79.4 % |
[ | X60/508 mm /8.7 mm | 矩形/长宽深为110、70、6.1 mm | -/玻璃纤维 | 3.2、6.4、12.8 mm/- | 内压 实验 | 爆破压力分别为未修复的1.23、1.40和1.51倍 |
[ | 20#碳钢/159 mm/6 mm | 矩形/长宽深为100、20、3 mm | 环氧树脂/碳纤维 | 1.05、1.75、3.5 mm/- | 内压 实验 | 爆破压力分别为未修复的1.20、1.32和1.35倍 |
[ | L245N/219 mm/11.8 mm | 矩形/长宽深为91、4、8.5 mm | -/玻璃纤维 | 4 mm/- | 内压 实验 | 失效压力为无损管道的1.84倍 |
[ | X60/42.2 mm /1.6 mm | 矩形/长宽深为10、5.5、1 mm | 环氧树脂/碳纤维 | 0.666 mm /60 mm | 拉伸 实验 | 抗拉强度为未修复的1.06倍 |
[ | X60/660 mm /7.1 mm | 球面/直径和深度为20 mm和 3.55 mm | -/- | 5 mm /100 mm | 数值 计算 | 失效内压为未修复的1.45倍 |
[ | API X60/ 324 mm/10 mm | 矩形/长宽深为6、0.33、0.5 mm | 环氧树脂/玻璃纤维 | 12 mm /448 mm | 数值 计算 | 失效内压为未修复的1.45倍 |
[68] | X42/108 mm /4 mm | 矩形/长宽为60 mm和56.52 mm,深度为1、2、3 mm | -/玻璃纤维 | 1.2 mm/- | 数值 计算 | 失效内压分别为未修复的1.05、1.08和1.14倍 |
[ | 20#碳钢/219 mm/6 mm | 矩形/长宽深为133、102、3.6 mm | 环氧树脂/玻璃纤维 | 9 mm /200 mm | 数值 计算 | 抵抗斗齿侵入能力提高约62 % |
参考文献 | 管道 | 修复层 | 主要研究 方法 | 修复效果评价 | ||
---|---|---|---|---|---|---|
管材/直径/壁厚 | 缺陷(形状/尺寸) | 材质(基体/纤维) | 尺寸(厚度/轴向长度) | |||
[ | Q235/426 mm /8 mm | 矩形/长宽深为58.2、1、4.6 mm | -/碳纤维 | 5、1 mm/300 mm | 内压 实验 | 修复区应力为未修复处的78.9 % |
[ | N80Q/177.8 mm/10.36 mm | 环状/长度 200 mm,深度 0~7 mm | 环氧树脂/碳纤维 | 9 mm/500 mm | 内压 实验 | 深度分别为5、6、7 mm的缺陷管道,修复后的爆破压力达到无损管道的100 %、90.1 %和79.4 % |
[ | X60/508 mm /8.7 mm | 矩形/长宽深为110、70、6.1 mm | -/玻璃纤维 | 3.2、6.4、12.8 mm/- | 内压 实验 | 爆破压力分别为未修复的1.23、1.40和1.51倍 |
[ | 20#碳钢/159 mm/6 mm | 矩形/长宽深为100、20、3 mm | 环氧树脂/碳纤维 | 1.05、1.75、3.5 mm/- | 内压 实验 | 爆破压力分别为未修复的1.20、1.32和1.35倍 |
[ | L245N/219 mm/11.8 mm | 矩形/长宽深为91、4、8.5 mm | -/玻璃纤维 | 4 mm/- | 内压 实验 | 失效压力为无损管道的1.84倍 |
[ | X60/42.2 mm /1.6 mm | 矩形/长宽深为10、5.5、1 mm | 环氧树脂/碳纤维 | 0.666 mm /60 mm | 拉伸 实验 | 抗拉强度为未修复的1.06倍 |
[ | X60/660 mm /7.1 mm | 球面/直径和深度为20 mm和 3.55 mm | -/- | 5 mm /100 mm | 数值 计算 | 失效内压为未修复的1.45倍 |
[ | API X60/ 324 mm/10 mm | 矩形/长宽深为6、0.33、0.5 mm | 环氧树脂/玻璃纤维 | 12 mm /448 mm | 数值 计算 | 失效内压为未修复的1.45倍 |
[68] | X42/108 mm /4 mm | 矩形/长宽为60 mm和56.52 mm,深度为1、2、3 mm | -/玻璃纤维 | 1.2 mm/- | 数值 计算 | 失效内压分别为未修复的1.05、1.08和1.14倍 |
[ | 20#碳钢/219 mm/6 mm | 矩形/长宽深为133、102、3.6 mm | 环氧树脂/玻璃纤维 | 9 mm /200 mm | 数值 计算 | 抵抗斗齿侵入能力提高约62 % |
1 | 张 李,王祯中,贾向明,等.油气管道本体缺陷修复方法及现场应用[J].中国石油和化工标准与质量, 2019, 39(20): 115⁃116. |
ZHANG L, WANG Z Z, JIA X M, et al. Repair method and field application of oil and gas pipeline body defects[J]. China Petroleum and Chemical Standards and Quality, 2019, 39(20): 115⁃116. | |
2 | 王 鹏.天然气长输管道缺陷修复技术综述以及典型实例应用[J].中国石油和化工标准与质量, 2020, 40(7): 160⁃167. |
WANG P. Review of repair technology of natural gas long distance pipeline and typical examples[J]. China Petroleum and Chemical Standards and Quality, 2020, 40(7): 160⁃167. | |
3 | 李荣光,杜 娟,赵国星,等.油气长输管道管体缺陷及修复技术概述[J].石油工程建设, 2016, 42(1): 10⁃13. |
LI R G, DU J, ZHAO G X, et al. Overview of pipe body defects and repair technology of oil and gas long⁃distance transportation pipeline[J]. Petroleum Engineering Construction, 2016, 42(1): 10⁃13. | |
4 | 张光明.管道本体缺陷修复探讨[J].石化技术, 2019, 26(4):100⁃101. |
ZHANG G M. Discussion on repairing defects of pipeline body[J].Petrochemical Technology, 2019, 26(4): 100⁃101. | |
5 | 张淑洁,王 瑞,王 欢.管道修复用聚氨酯树脂体系流变特性及固化工艺的研究[J].中国塑料, 2007 (11): 60⁃64. |
ZHANG S J, WANG R, WANG H. Research of rheological properties and curing process of polyurethane resin system for pipeline repair[J].China Plastics, 2007 (11): 60⁃64. | |
6 | 宋传江,王 虎.玻璃纤维增强复合材料工程化应用进展[J].中国塑料, 2015, 29(3): 9⁃15. |
SONG C J, WANG H. Engineering application research of glass fiber reinforced composite materials[J]. China Plastics, 2015, 29(3): 9⁃15. | |
7 | 申梦岭.玻璃纤维复合材料修复油气管道表面裂纹的应用[J].塑料助剂, 2018, 4(3): 49⁃53. |
SHEN M L. Applicatian of glass fiber reinforced polymer to the repair of oil & gas pipe cracks[J].Plastics Additives, 2018, 4(3): 49⁃53. | |
8 | 张菡英,刘 明.碳纤维复合材料的发展及应用[J].工程塑料应用, 2015, 43(11):132⁃135. |
ZHANG H Y, LIU M. Development and applications of carbon fiber reinforced polymer[J]. Application of Engineering Plastics, 2015, 43(11):132⁃135. | |
9 | 张万里,奚运涛.碳纤维复合材料补强修复效果的在线评价方法[J].机械强度, 2013, 35(6): 869⁃872. |
ZHANG W L, XI Y T. In⁃line monitoring method of carbon fiber composites pipeline repair effects[J]. Mechanical Strength, 2013, 35(6): 869⁃872. | |
10 | 伏立松,张淑洁,王 瑞,等.管道修复用涤纶/苎麻非织造复合材料拉伸强度[J].纺织学报, 2020, 41(2): 52⁃57. |
FU L S, ZHANG S J, WANG R, et al. Tensile strength of polyester / ramie nonwoven composite applied on pipeline rehabilitation[J].Textile Journals, 2020, 41(2): 52⁃57. | |
11 | 张淑洁,伏立松,王 瑞,等.管道修复用涤纶⁃苎麻非织造物/环氧树脂复合材料厚度设计[J].复合材料学报, 2019, 36(12): 2 805⁃2 814. |
ZHANG S J, FU L S, WANG R, et al. Thickness design of polyester⁃ramie / epoxy nonwoven composite applied on pipeline rehabilitation[J].Acta Materiae Compositae Sinica, 2019, 36(12): 2 805⁃2 814. | |
12 | ROHEM N R F, PACHECO L J, BUDHE S, et al. Development and qualification of a new polymeric matrix laminated composite for pipe repair [J]. Composite Structures, 2016, 152:737⁃745. |
13 | 刘长征,陈 彬, 吉建立,等. 埋地钢质管道管体缺陷修复指南 [S].中国质检总局, 2018. |
14 | 郭晓克,马 洪,裴育锋,等. 压力管道规范——动力管道 [S].国家质检总局,2015. |
15 | 卢启春,张 巍,李荣光,等. 油气管道管体缺陷修复技术规范 [S]. 2018. |
16 | 续 理,修长征,孙 宇,等. 压力管道规范——长输管道 [S].国家质检总局, 2017. |
17 | 李德宝,刘志刚,王 鑫,等. 钢质油气管道失效抢修技术规范 [S]. 2016. |
18 | 戚东涛,张冬娜,马秋荣,等. 石油天然气工业用复合材料增强管线钢管 [S].国家质检总局, 2017. |
19 | .Repair of pressure equipment and piping [S]. The American Society of Mechanical Engineers,2011. |
20 | . Composite repairs for pipework [S]. Petroleum, Petrochemical and Natural Gas Industries, 2006. |
21 | 艳 援,傅建华,刘如伟,等. 涂覆涂料前钢材表面处理.表面清洁度的目视评定.第1部分:未涂覆过的钢材表面和全面清除原有涂层后的钢材表面的锈蚀等级和处理等级 [S].国家质检总局,2011. |
22 | MAZURKIEWICZ L, TOMASZEWSKI M, MALACHOWSKI J, et al. Experimental and numerical study of steel pipe with part⁃wall defect reinforced with fibre glass sleeve[J].International Journal of Pressure Vessels and Piping, 2017, 149: 108⁃119. |
23 | MAZURKIEWICZ L, MALACHOWSKI J, DAMAZIAK K, et al. Evaluation of the response of fibre reinforced composite repair of steel pipeline subjected to puncture from excavator tooth[J]. Composite Structures, 2018, 202: 1 126–1 135. |
24 | MAZURKIEWICZ L, MALACHOWSKI J, TOMASZEWSKI M, et al. Performance of steel pipe reinforced with composite sleave[J].Composite Structures, 2018, 183: 199–211. |
25 | SING L K, YAHAYA N, VALIPOUR A, et al. Mechanical properties characterization and finite element analysis of epoxy grouts in repairing damaged pipeline[J]. Journal of Pressure Vessel Technology, 2018,140: 6. |
26 | SHAMSUDDOHA M, MANALO A, ARAVINTHAN T, et al. Failure analysis and design of grouted fibre⁃composite rrepair system for corroded steel pipes[J]. Engineering Failure Analysis, 2021, 119: 104979. |
27 | SHAMSUDDOHA M, ISLAM Md M, ARAVINTHAN T, et al. Characterisation of mechanical and thermal properties of epoxy grouts for composite repair of steel pipelines[J].Materials and Design, 2013, 52: 315⁃327. |
28 | 孙传青.玻璃纤维复合材料用于干线管道整体加强适用性分析[J].化工管理, 2020, 24 (4): 166⁃167. |
SUN C Q. Applicability analysis of glass fiber composite for overall strengthening of main pipe[J]. Chemical Management, 2020, 24 (4): 166⁃167. | |
29 | 贾 彬,张志伟,陈晓强.纤维增强复合材料加固金属管线实验研究与设计分析[J].工业建筑, 2013, 43(7): 57⁃60,51. |
JIA B, ZHANG Z W, CHEN X Q. Design and experimental study on metal pipeline strengthened by fiber reinforced polymers[J]. Industrial Construction, 2013, 43(7): 57⁃60,51. | |
30 | 贾 彬,刘顺丰,张志伟,等.纤维布加固钢管道的补强效果影响因素分析[J].工业建筑, 2015, 45(3): 174⁃179. |
JIA B, LIU S F, ZHANG Z W, et al. Strengthening effectiveness influence factor analysis on steel pipelines strengthened by fiber reinforced polymers sheet[J]. Industrial Construction, 2015, 45(3): 174⁃179. | |
31 | MOKHTARI M, NIA A A. The influence of using CFRP wraps on performance of buried steel pipelines under permanent ground deformations [J]. Soil Dynamics and Earthquake Engineering, 2015, 73:29⁃41. |
32 | MOKHTARI M, NIA A A. The application of CFRP to strengthen buried steel pipelines against subsurface explosion [J]. Soil Dynamics and Earthquake Engineering, 2016, 87: 52⁃62. |
33 | 张保龙,王彬彬,成志强.复合材料修复含环向裂纹管道实验研究[J].成都大学学报(自然科学版), 2019, 38(2): 194⁃198. |
ZHANG B L, WANG B B, CHENG Z Q. Experimental study on repairing pipes with circumferential cracks by composite[J].Journal of Chengdu University(Natural Science), 2019, 38(2): 194⁃198. | |
34 | 王凯一. 油气管道环向表面裂纹玻璃纤维增强复合材料修复补强研究[D].成都:西南交通大学,2017. |
35 | 柳 军,严 波,卢岳川,等.碳纤维复合材料缠绕修复的压力管道断裂分析[J].核动力工程, 2011, 32(2): 48⁃52,115. |
LIU J, YAN B, LU Y C, et al. Fracture analysis of pressure pipe repaired by winding of carbon fiber composite[J]. Nuclear Power Engineering, 2011, 32(2): 48⁃52,115. | |
36 | 赵 宁. 含轴向裂纹天然气管道断裂特性与修复研究[D].大庆:东北石油大学,2019. |
37 | MERIEM BENZIANE M, ABDUL WAHAB S A, ZAHLOUL H, et al. Finite element analysis of the integrity of an API X65 pipeline with a longitudinal crack repaired with single⁃ and double⁃bonded composites [J].Composites Part B, 2015, 77: 431⁃439. |
38 | CHEN J Q, WANG H, SALEMI M, et al. Finite element analysis of composite repair for damaged steel pipeline[J]. Coatings, 2021, 11(3):301. |
39 | ABTAH F GAL, MAHDI E, GOWID S. The use of composite to eliminate the effect of welding on the bending behavior of metallic pipes[J]. Composite Structures, 2020, 235:111793. |
40 | AROUCHE M M, BUDHE S, ALVES L A, Effect of moisture on the adhesion of CFRP⁃to⁃steel bonded joints using peel tests [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40(1): 10. |
41 | OZEL A, YAZICI B, AKPINAR S, et al. A study on the strength of adhesively bonded joints with different adherends [J]. Composites Part B: Engineering, 2014, 62:167⁃174. |
42 | ANYFANTIS K N, TSOUVALIS N G. Loading and fracture response of CFRP⁃to⁃steel adhesively bonded joints with thick adherents⁃part II: numerical simulation [J]. Composite Structures, 2013, 96:858⁃868. |
43 | LI J, YAN Y, ZHANG T, et al. Experimental study of adhesively bonded CFRP joints subjected to tensile loads [J]. International Journal of Adhesion and Adhesives, 2015, 57:95⁃104. |
44 | YU Q Q, GAO R X, GU X L, et al. Bond behavior of CFRP⁃steel double⁃lap joints exposed to marine atmosphere and fatigue loading [J]. Engineering Structures, 2018, 175:76⁃85. |
45 | BANEA M D, SILVA L F M D, CAMPILHO R D S G. Effect of temperature on tensile strength and mode I fracture toughness of a high temperature epoxy adhesive [J]. Journal of Adhesion Science and Technology, 2012, 26(7): 939⁃953. |
46 | WITEK M. Gas transmission pipeline failure probability estimation and defect repairs activities based on in⁃line inspection data [J]. Eng Fail Anal, 2018, 70 : 255⁃272. |
47 | DRAIDI Z, BUI T T, LIMAM A, et al. Buckling behavior of metallic cylindrical shell structures strengthened with CFRP composite[J]. Advances in Civil Engineering, 2018: 4231631. |
48 | HOSSEINI A S, BAHAARI M R, LESANI M. Parametric study of FRP strengthening on stress concentration factors in an offshore tubular T⁃joint subjected to in⁃plane and out⁃of‑plane bending moments[J]. International Journal of Steel Structures, 2019(6):1 755–1 766. |
49 | 赵 鑫.油气管道腐蚀的检测与修复技术[J].炼油与化工,2015, 26(1): 32⁃35. |
ZHAO X. Detection and repairing techniques for oil and gas pipeline corrosion[J]. Refining and Chemical Industry, 2015, 26(1): 32⁃35. | |
50 | 程 磊.管道维抢修复合材料应用浅析[J].石油管材与仪器, 2018, 4(4): 71⁃73. |
CHENG L. Wrap composite material sleeve application in pipeline maintenance[J].Petroleum Tubular Goods & Instruments, 2018, 4(4): 71⁃73. | |
51 | 王 婷,杨 辉,冯庆善,等.油气管道环焊缝缺陷内检测技术现状与展望[J]. 油气储运, 2015, 34(7): 694⁃698. |
WANG T, YANG H, FENG Q S, et al. Current status and prospect of inline inspection technologies for defects in girth weld of oil and gas pipeline[J]. Oil & Gas Storage and Transportation, 2015, 34(7): 694⁃698. | |
52 | VALADI Z, BAYESTEH H, MOHAMMADI S. XFEM fracture analysis of cracked pipeline with and without FRP composite repairs[J]. Mechanics of Advanced Materials and Structures. 2020, 27(22): 1 888⁃1 899. |
53 | AABD ELHADY A, SALLAM H E D M, MUBARAKI M A. Failure analysis of composite repaired pipelines with an inclined crack under static internal pressure[C]// 2nd International Conference on Structural Integrity. Funchal, Portugal, 2017: 123⁃130. |
54 | AABD ELHADY A, SALLAM H E D M, ALARIF I M, et al. Investigation of fatigue crack propagation in steel pipeline repaired by glass fiber reinforced polymer[J]. Composite Structures, 2020, 242: 112189. |
55 | WANG L Y, SONG S, DENG H B, et al. Finite⁃element analysis of crack arrest properties of fiber reinforced composites application in semi⁃elliptical cracked pipelines[J]. Applied Composite Materials, 2018, 25(2): 321⁃334. |
56 | 高建华.油气管道腐蚀后剩余强度的评价研究[D].大庆:东北石油大学,2013. |
57 | 龚小平,曾 力,陈 曦,等. 元坝气田场站污水管道腐蚀机理及防腐对策研究[J].石油化工腐蚀与防护, 2021, 38(5): 6⁃11. |
GONG X P, ZENG L, CHEN X, et al. Study on corrosion mechanism and anti⁃corrosion countermeasures of sewage pipes in yuanba gas field[J]. Corrosion & Protection in Petrochemical Industry, 2021, 38(5): 6⁃11. | |
58 | 王俊强,何仁洋.含缺陷管道复合材料修复后承压能力研究[J].压力容器, 2015, 32(9): 59⁃65. |
WANG J Q, HE R Y. Study on pressure⁃bearing capacity of pipeline with defects repaired by composite materials[J]. Pressure Vessel Technology, 2015, 32(9): 59⁃65. | |
59 | 刘培启,耿发贵,刘 岩,等.碳纤维增强环氧树脂复合材料修复N80Q钢管的力学性能[J].复合材料学报, 2020, 37(4): 808⁃815. |
LIU P Q, GENG F G, LIU Y, et al. Mechanical properties of N80Q steel pipe repaired by carbon fiber reinforced epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2020, 37(4): 808⁃815. | |
60 | 杨寄诚,王言聿.复合材料缠绕修复管道的应变分析[J].机械强度, 2020, 42(1):55⁃60. |
YANG J C, WANG Y J. Strain analyses of repaired pipelines by enwinding composite materials[J]. Journal of Mechanical Strength, 2020, 42(1):55⁃60. | |
61 | 孟祥进,吴佳琦,施哲雄,等.碳纤维修复技术在局部减薄缺陷管道中的应用研究[J].现代化工, 2015, 35(8): 144⁃146. |
MENG X J, WU J Q, SHI Z X, et al. Application of carbon fiber reinforcement technology in pipe with local thinning defects[J]. Modern Chemical Industry, 2015, 35(8): 144⁃146. | |
62 | 王言聿,成志强,周 毅,等.ASME PCC⁃2⁃2011复合材料修复设计适用性及实验验证[J].油气储运, 2018, 37(4): 449⁃453. |
WANG Y Y, CHENG Z Q, ZHOU Y, et al. Applicability analysis and experimental validation of ASME PCC⁃2⁃2011 composite repair system design methodology[J]. Oil & Gas Storage and Transportation, 2018, 37(4): 449⁃453. | |
63 | ZHANG Y, CHENG Z Y, JIA Z K. Failure loads analysis of corroded pipe repaired by composite material under tension and internal pressure [J]. Journal of Marine Engineering and Technology, 2020. |
64 | 帅 健,刘 惟,王俊强,等.复合材料缠绕修复管道的应力分析[J].石油学报, 2013, 34(2): 372⁃379. |
SHUAI J, LIU W, WANG J Q, et al. Stress analyses of repaired pipelines by enwinding composite materials[J]. Acta Petrolei Sinica, 2013, 34(2): 372⁃379. | |
65 | 施奇林,段梦兰,钟朝伟,等.复合材料缠绕修复腐蚀管道的有限元模型研究[J].石油机械, 2017, 45(9): 110⁃116. |
SHI Q L, DUAN M L, ZHONG C W, et al. Study on finite element model of repairing corroded pipe by enwinding composite material[J]. China Petroleum Machinery, 2017, 45(9): 110⁃116. | |
66 | 施奇林. 腐蚀管道复合材料修复层强度分析[D].北京:中国石油大学,2017. |
67 | 陈如木,邱金水,刘伯运,等.纤维复合材料修复缺陷管道的失效分析[J].华中科技大学学报(自然科学版), 2018, 46(11): 121⁃127. |
CHENG R M, QIU J S, LIU B Y, et al. Failure analysis of defective pipelines repaired with fiber composites[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition),2018, 46(11): 121⁃127. |
[1] | SONG Yinbao, YANG Jianjun, LI Chuanmin. Study on properties and manufacturing precision of PDMS/SiC functionally gradient composites [J]. China Plastics, 2022, 36(7): 30-36. |
[2] | YANG Xiaolong, CHEN Wenjing, LI Yongqing, YAN Xiaokun, WANG Xiulei, XIE Pengcheng, MA Xiuqing. Research progress in polymer/graphene conductive composites [J]. China Plastics, 2022, 36(6): 165-173. |
[3] | WANG Ke, LONG Chunguang. Mechanical and tribological properties of ultra⁃high molecular weight polyethylene/sepiolite fiber composites [J]. China Plastics, 2022, 36(5): 19-23. |
[4] | CHEN Sheng, LIANG Yingchao, WU Fangjuan, FANG Hui, FAN Xinfeng, CHEN Hui, WANG Yonggang. Preparation and interfacial modification of polyamide 6/bidirectional warp⁃knitted glass fiber composites [J]. China Plastics, 2022, 36(5): 24-28. |
[5] | LIU Wen, SHI Wenzhao, LIU Jinshu, LU Shaofeng, ZHOU Hongjuan. Research progress in electro⁃active shape memory composite materials [J]. China Plastics, 2022, 36(4): 175-189. |
[6] | RUAN Fangtao, XIA Chenglong, ZHANG Baogen, CAO Ye, LIU Zhi, XU Zhenzhen, ZHANG Jincao. Axial compressive properties of aramid⁃coated carbon⁃fiber⁃reinforced epoxy resins [J]. China Plastics, 2022, 36(4): 19-23. |
[7] | PENG Bo, XIAO Yunbin, GU Jiabao, CHEN Zijun, TANG Yanhuang, ZHU Gang, XU Huanxiang. Research progress in preparation and properties of polymer/graphene composites [J]. China Plastics, 2022, 36(4): 190-197. |
[8] | SONG Lijian, ZHANG Youchen, ZUO Xiahua, ZHANG Zhenghe, AN Ying, YANG Weimin, TAN Jing, CHENG Lisheng. Research progress on interfacial thermal transport controlled by self⁃assembled monolayers [J]. China Plastics, 2022, 36(4): 60-69. |
[9] | XIE Yu, WANG Limei, QI Bin. Preparation and properties of crosslinked chitosan/montmorillonite composite films [J]. China Plastics, 2022, 36(3): 58-63. |
[10] | LIU Yankuan, GU Zichen, WANG Zhiping. Preparation technology and development trend of continuous⁃fiber⁃reinforced thermoplastic prepregs [J]. China Plastics, 2022, 36(2): 172-181. |
[11] | HE Mingfeng, WANG Ke, WANG Qiyang, YANG Xiao, GUO Hong, HU Boyang, LI Baoan. Study on polyvinylidene fluoride/matrix⁃like groups⁃modified graphene composites with high thermal conductivity [J]. China Plastics, 2022, 36(2): 41-48. |
[12] | LI Qiwei, WANG Cuicui, ZHENG Haijun, CHEN Jihe, WANG Ge, CHENG Haitao. Effects of multiple extrusions on mechanical and foaming properties of polypropylene/bamboo fiber composites [J]. China Plastics, 2022, 36(2): 56-60. |
[13] | LI Bo, GONG Jun, JIN Xueyi, MENG Xiaoyu. Effect of carbon nanotube modification method on properties of polyamide 11 [J]. China Plastics, 2022, 36(2): 61-66. |
[14] | JIAO Qi, LI Ruilong, CHEN Couxi, ZHANG Shouyu, SONG Chengpeng, CHEN Tonghai, JIANG Ruyuan, ZHENG Pengcheng. Lifetime predication of coal⁃based polypropylene modified with ternary antioxidant composite system [J]. China Plastics, 2022, 36(1): 15-24. |
[15] | WANG Qiyang, YANG Xiao, CHEN Jihuan, HE Yuexing, YANG Dongmei, HU Boyang, GUO Hong, LI Baoan. Study on double⁃segregated polyethylene/graphene composites with high thermal conductivity [J]. China Plastics, 2022, 36(1): 32-41. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||