京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2023, Vol. 37 ›› Issue (12): 60-69.DOI: 10.19491/j.issn.1001-9278.2023.12.010
• Processing and Application • Previous Articles Next Articles
LI Haoyi1,2, WANG Yiming2, DING Xi2, ZHANG Yi2, BAI Jingyu3, LI Feifei4, ZHANG Yueyong4, YANG Weimin1,2()
Received:
2023-06-19
Online:
2023-12-26
Published:
2023-12-26
CLC Number:
LI Haoyi, WANG Yiming, DING Xi, ZHANG Yi, BAI Jingyu, LI Feifei, ZHANG Yueyong, YANG Weimin. Research progress in electrospinning drug loading and its applications[J]. China Plastics, 2023, 37(12): 60-69.
种类 | 优点 | 缺点 | 参考文献 |
---|---|---|---|
溶液电纺载药 | 工艺简单、适用材料广泛 | 污染、生产效率低、纤维力学性能差 | [ |
乳液电纺载药 | 装置简单、纤维有缓释壳⁃核结构 | 乳液配制要求高 | [ |
熔体电纺载药 | 避免污染、连续性好、纤维结晶度高、纤维力学性能好 | 加工温度高限制热稳定性差的药物使用、装置较复杂 | [ |
种类 | 优点 | 缺点 | 参考文献 |
---|---|---|---|
溶液电纺载药 | 工艺简单、适用材料广泛 | 污染、生产效率低、纤维力学性能差 | [ |
乳液电纺载药 | 装置简单、纤维有缓释壳⁃核结构 | 乳液配制要求高 | [ |
熔体电纺载药 | 避免污染、连续性好、纤维结晶度高、纤维力学性能好 | 加工温度高限制热稳定性差的药物使用、装置较复杂 | [ |
来源 | 变量 | 程度 | 释放路径 | 影响 | 释放能力 | 参考文献 |
---|---|---|---|---|---|---|
纤维 | 直径 | ↑ | ↑ | 延长路径 | ↓ | [ |
孔隙 | ↑ | ↓ | 提供捷径 | ↑ | [ | |
结构 | 多轴 | - | 屏障变多 | ↓ | [ | |
结晶度 | ↑ | - | 有序结构屏障变多 | ↓ | [ | |
药物 | 浓度 | ↑ | ↓ | 屏障变少 | ↑ | [ |
结晶度 | ↑ | ⁃ | 纤维包覆程度下降 | ↑ | [ |
来源 | 变量 | 程度 | 释放路径 | 影响 | 释放能力 | 参考文献 |
---|---|---|---|---|---|---|
纤维 | 直径 | ↑ | ↑ | 延长路径 | ↓ | [ |
孔隙 | ↑ | ↓ | 提供捷径 | ↑ | [ | |
结构 | 多轴 | - | 屏障变多 | ↓ | [ | |
结晶度 | ↑ | - | 有序结构屏障变多 | ↓ | [ | |
药物 | 浓度 | ↑ | ↓ | 屏障变少 | ↑ | [ |
结晶度 | ↑ | ⁃ | 纤维包覆程度下降 | ↑ | [ |
1 | 刘芮铭, 张金珊, 田强运, 等. 静电纺丝控释材料的最新研究进展[J]. 包装工程, 2023, 44(3): 39⁃51. |
LIU R M, ZHANG J S, TIAN Q Y, et al. Recent research progress on electrospinning controlled⁃release materials[J]. Packaging Engineering, 2023, 44(3): 39⁃51. | |
2 | HU X, SHI L, ZHOU G, et al. Electrospinning of polymeric nanofibers for drug delivery applications[J]. Journal of Controlled Release, 2014, 185(27): 12–21. |
3 | 何雪涛, 张 毅, 莫振宇, 等. 熔体微分静电纺PBAT纤维膜的制备工艺研究[J]. 中国塑料, 2022, 36(12): 1⁃5. |
HE X T, ZHANG Y, MO Z Y, et al. Preparation process of PBAT fiber membrane by melt differential electrospinning [J]. China Plastics, 2022, 36(12): 1⁃5. | |
4 | SUN Y, CHENG S, LU W, et al. Electrospun fibers and their application in drug controlled release, biological dressings, tissue repair, and enzyme immobilization[J]. RSC Advances, 2019, 9(44): 25 712⁃25 729. |
5 | NGADIMAN N, NOORDIN M, IDRIS A, et al. Effect of electrospinning parameters setting towards fiber diameter[J]. Advanced Materials Research, 2014, 845: 985⁃988. |
6 | HERRERO⁃HERRERO M, GóMEZ⁃TEJEDOR J A, VALLéS⁃LLUCH A. PLA/PCL electrospun membranes of tailored fibres diameter as drug delivery systems[J]. European Polymer Journal, 2018, 99: 445⁃455. |
7 | SINGH A, RATH G, SINGH R, et al. Nanofibers: An effective tool for controlled and sustained drug delivery[J]. Current Drug Delivery, 2018, 15(2): 155⁃166. |
8 | NAGY Z K, BALOGH A, FERGUSON J, et al. Solvent⁃free melt electrospinning for preparation of fast dissolving drug delivery system and comparison with solvent⁃based electrospun and melt extruded systems[J]. Journal of Pharmaceutical Sciences, 2013, 102(2): 508⁃517. |
9 | 刘力菲, 李 伟, 黄潇楠. 静电纺丝纳米纤维的制备与应用[J]. 首都师范大学学报 (自然科学版), 2017, 38(1): 58⁃63. |
LIU L F, LI W, HUANG X N. Preparation and application of the electrospinning nanofibers[J]. Journal of Capital Normal University (Natural Science Edition), 2017, 38(1): 58⁃63. | |
10 | 于超群, 龙云泽, 刘现峰, 等. 载药静电纺丝纤维研究及应用进展[J]. 青岛大学学报 (医学版), 2023, 59(1): 147⁃150. |
YU C Q, LONG Y Z, LIU X F, et al. Advances in the research and application of drug⁃loaded electrospinning nanofibers[J].Journal of Qingdao University (Medical Sciences), 2023, 59(1): 147⁃150. | |
11 | 吕婷婷, 安 瑛, 李好义, 等. 静电纺动物蛋白纳米纤维研究进展[J]. 纺织学报, 2019, 40(12): 140⁃145. |
Lü T T, AN Y, LI H Y, et al. Research progress of electrospun animal protein nanofiber[J]. Journal of Textile Research, 2019, 40(12): 140⁃145. | |
12 | 李 亮, 裴斐斐, 刘淑萍, 等. 聚乳酸纳米纤维基载药敷料的制备与表征[J]. 纺织学报, 2022, 43(11): 1⁃8. |
LI L, PEI F F LIU S P, et al. Preparation and characterization of polylactic acid nanofiber drug loaded medical dressings[J]. Journal of Textile Research, 2022, 43(11): 1⁃8. | |
13 | AVOSSA J, HERWIG G, TONCELLJ C, et al. Electrospinning based on benign solvents: current definitions, implications and strategies[J]. Green Chem., 2022, 24(6): 2 347⁃2 375. |
14 | PARTHENIADIS I, NIKOLAKAKIS I, LAIDMÄE I, et al. A Mini⁃review: needleless electrospinning of nanofibers for pharmaceutical and biomedical applications[J]. Processes, 2020, 8(6): 673. |
15 | HU J, XIONG Z, LIU Y, et al. A biodegradable composite filter made from electrospun zein fibers underlaid on the cellulose paper towel[J]. International Journal of Biological Macromolecules, 2022, 204: 419⁃428. |
16 | ZHANG Q, LIN Z, ZHANG W, et al. Fabrication of green poly(vinyl alcohol) nanofibers using natural deep eutectic solvent for fast⁃dissolving drug delivery[J]. RSC Advances, 2020, 11(2): 1 012⁃1 021. |
17 | SCHULTE⁃WERNING L V, MURUGAIAH A, SINGH B, et al. Multifunctional nanofibrous dressing with antimicrobial and anti⁃inflammatory properties prepared by needle⁃free electrospinning[J]. Pharmaceutics, 2021, 13(9): 1 527. |
18 | RAMOS C, LANNO G M, LAIDMÄE I, et al. High humidity electrospinning of porous fibers for tuning the release of drug delivery systems[J]. International Journal of Polymeric Materials and Polymeric Biomaterials, 2021, 70(12): 880⁃892. |
19 | YANG H, WANG L, XIANG C, et al. Electrospun Porous PLLA and Poly(LLA⁃co⁃CL) Fibers by Phase Separation[J]. New Journal of Chemistry, 2018, 42(7): 5 102⁃5 108. |
20 | WANG Y, YU D⁃G, LIU Y, et al. Progress of electrospun nanofibrous carriers for modifications to drug release profiles[J]. Journal of Functional Biomaterials, 2022, 13(4): 289. |
21 | ZARE M, RAMAKRISHNA S. Current progress of electrospun nanocarriers for drug delivery applications[C]//in Proceedings of the 1st International Electronic Conference on Pharmaceutics,Proceedings. Switzerland: MDPI, 2020. |
22 | 仇洪涛. 乳液静电纺丝核壳纳米纤维模型的研究[D]. 天津:天津科技大学, 2020. |
23 | ABDUL HAMEED M M, MOHAMED KHAN S A P, THAMER B M, et al. Core⁃shell nanofibers from poly(vinyl alcohol) based biopolymers using emulsion electrospinning as drug delivery system for cephalexin drug[J]. Journal of Macromolecular Science Part A, 2020, 58(2): 130⁃144. |
24 | NOROUZI M R, GHASEMI⁃MOBARAKEH L, ITEL F, et al. Emulsion electrospinning of sodium alginate/poly(ε⁃caprolactone) core/shell nanofibers for biomedical applications[J]. Nanoscale Advances, 2022, 4(13): 2 929⁃2 941. |
25 | LIAN H, MENG Z. Melt electrospinning vs. solution electrospinning: A comparative study of drug⁃loaded poly (ε⁃caprolactone) fibres[J]. Materials Science and Engineering: C, 2017, 74: 117⁃123. |
26 | Ting X, Jincheng G, Jie M, et al. Melt electrowriting reinforced composite membrane for controlled drug release[J]. Journal of the mechanical behavior of biomedical materials, 2022, 132: 105277. |
27 | Balogh A, Drávavölgyi G, Faragó K, et al. Plasticized drug⁃loaded melt electrospun polymer mats: characterization, thermal degradation, and release kinetics[J]. Journal of Pharmaceutical Sciences, 2014, 103(4): 1 278⁃1 287. |
28 | Li H, Chen H, Zhong X, et al. Interjet distance in needleless melt differential electrospinning with umbellate nozzles[J]. Journal of Applied Polymer Science, 2014, 131(15): 338⁃347. |
29 | 李好义, 王逸铭, 杨卫民, 等. 一种熔体静电纺丝的透皮贴剂及其生产工艺: 中国,CN202210610607.6 [P]. 2022⁃08⁃26. |
30 | ZHANG Q, LI Y, LIN Z Y W, et al. Electrospun polymeric micro/nanofibrous scaffolds for long⁃term drug release and their biomedical applications[J]. Drug Discovery Today, 2017, 22(9): 1 351⁃1 366. |
31 | KHALF A, MADIHALLY S V. Recent advances in multiaxial electrospinning for drug delivery[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 112: 1⁃17. |
32 | CUI Z, ZHENG Z, LIN L, et al. Electrospinning and crosslinking of polyvinyl alcohol/chitosan composite nanofiber for transdermal drug delivery[J]. Advances in Polymer Technology, 2018, 37(6): 1 917⁃1 928. |
33 | CHAPARRO F J, PRESLEY K F, SILVA M A C DA, et al. Sintered electrospun polycaprolactone for controlled model drug delivery[J]. Materials Science and Engineering: C, 2019, 99: 112⁃120. |
34 | CHOU S F, CARSON D, WOODROW K A. Current strategies for sustaining drug release from electrospun nanofibers[J]. Journal of Controlled Release, 2015, 220(Pt B): 584⁃591. |
35 | YU D G, WANG M, GE R. Strategies for sustained drug release from electrospun multi‐layer nanostructures[J]. Wiley interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14(3): e1772. |
36 | 马玥珑, 李 佳, 王 虹. 静电纺丝制备载药纳米纤维的研究进展[J]. 哈尔滨理工大学学报, 2021, 26(5): 130⁃140. |
MA Y L, LI J, WANG H. Research progress on drug⁃loaded nanofibers prepared by electrospinning[J]. Journal of Harbin University of Science and Technology, 2021, 26(5): 130⁃140. | |
37 | AKHGARI A, DEZFULI A G, REZAEI M, et al. The design and evaluation of a fast⁃dissolving drug delivery system for loratadine using the electrospinning method[J]. Jundishapur Journal of Natural Pharmaceutical Products, 2016, 11(2). |
38 | SEIF S, GRAEF F, GORDON S, et al. Monitoring drug release from electrospun fibers using an in situ fiber⁃optics system[J]. Dissolution Technologies, 2016, 23(2): 6⁃11. |
39 | OPANASOPIT P, SILA⁃ON W, ROJANARATA T, et al. Fabrication and properties of capsicum extract⁃loaded PVA and CA nanofiber patches[J]. Pharmaceutical development and technology, 2013, 18(5): 1 140⁃1 147. |
40 | SA’ADON S, RAZAK S I ABD, FAKHRUDDIN K. Drug⁃loaded poly⁃vinyl alcohol electrospun nanofibers for transdermal drug delivery: Review on factors affecting the drug release[J]. Procedia Computer Science, 2019, 158: 436⁃442. |
41 | SEIF S, FRANZEN L, WINDBERGS M. Overcoming drug crystallization in electrospun fibers–Elucidating key parameters and developing strategies for drug delivery[J]. International Journal of Pharmaceutics, 2015, 478(1): 390⁃397. |
42 | GHOSAL K, AUGUSTINE R, ZASZCZYNSKA A, et al. Novel drug delivery systems based on triaxial electrospinning based nanofibers[J]. Reactive and Functional Polymers, 2021, 163(1): 104895. |
43 | ZHU T, CHEN S, LI W, et al. Flurbiprofen axetil loaded coaxial electrospun poly(vinyl pyrrolidone)⁃nanopoly(lactic⁃co⁃glycolic acid) core⁃shell composite nanofibers: Preparation, characterization, and anti⁃adhesion activity[J]. Journal of Applied Polymer Science, 2015, 132(22). |
44 | DING Y, DOU C, CHANG S, et al. Core–shell eudragit S100 nanofibers prepared via triaxial electrospinning to provide a colon⁃targeted extended drug release[J]. Polymers, 2020, 12(9): 2 034. |
45 | LI H, LIU K, SANG Q, et al. A thermosensitive drug delivery system prepared by blend electrospinning[J]. Colloids and Surfaces B: Biointerfaces, 2017, 159: 277⁃283. |
46 | AMARJARGAL A, BRUNELLI M, FORTUNATO G, et al. On⁃demand drug release from tailored blended electrospun nanofibers[J]. Journal of Drug Delivery Science and Technology, 2019, 52: 8⁃14. |
47 | TABAKOGLU S, KOŁBUK D, SAJKIEWICZ P. Multifluid electrospinning for multi⁃drug delivery systems: pros and cons, challenges, and future directions[J]. Biomaterials Science, 2023, 11(1): 37⁃61. |
48 | HAN D, STECKL A J. Triaxial electrospun nanofiber membranes for controlled dual release of functional molecules[J]. ACS Applied Materials & Interfaces, 2013, 5(16): 8 241⁃8 245. |
49 | LI D, WANG M, SONG W⁃L, et al. Electrospun janus beads⁃on⁃a⁃string structures for different types of controlled release profiles of double drugs[J]. Biomolecules, 2021, 11(5): 635. |
50 | WANG M L, YU D G, BLIGH S W A. Progress in preparing electrospun Janus fibers and their applications[J]. Applied Materials Today, 2023, 31: 101766. |
51 | YANG J, WANG K, YU D G, et al. Electrospun janus nanofibers loaded with a drug and inorganic nanoparticles as an effective antibacterial wound dressing[J]. Materials Science and Engineering C, 2020, 111(1): 110805. |
52 | WANG M, GE R, ZHAO P, et al. Exploring wettability difference⁃driven wetting by utilizing electrospun chimeric Janus microfiber comprising cellulose acetate and polyvinylpyrrolidone[J]. Materials & Design, 2023, 226: 111652. |
53 | FARKAS N I, MARINCAȘ L, BARABáS R, et al. Preparation and characterization of doxycycline⁃loaded electrospun PLA/HAP nanofibers as a drug delivery system[J]. Materials, 2022, 15(6): 2 105. |
54 | DUFAY M, JIMENEZ M, CASETTA M, et al. PCL covered PP meshes plasma⁃grafted by sulfonated monomer for the prevention of postoperative abdominal adhesions[J]. Materials Today Communications, 2021, 26: 101968. |
55 | AL⁃HANBALI O A, KHAN H M S, SARFRAZ M, et al. Transdermal patches: design and current approaches to painless drug delivery[J]. Acta Pharmaceutica, 2019, 69(2): 197⁃215. |
56 | PAUDEL K S, MILEWSKI M, SWADLEY C L, et al. Challenges and opportunities in dermal/transdermal delivery[J]. Therapeutic Delivery, 2010, 1(1): 109⁃131. |
57 | JEONG W Y, KWON M, CHOI H E, et al. Recent advances in transdermal drug delivery systems: a review[J]. Biomaterials Research, 2021, 25(1):24. |
58 | LI C N, GUPTA M. Transdermal drug delivery systems in diabetes management: a review[J]. Asian Journal of Pharmaceutical Sciences, 2020, 15(1): 13⁃25. |
59 | TAEPAIBOON P, RUNGSARDTHONG U, SUPAPHOL P. Drug⁃loaded electrospun mats of poly (vinyl alcohol) fibres and their release characteristics of four model drugs[J]. Nanotechnology, 2006, 17(9): 2 317⁃2 329. |
60 | YEKRANG J, SHAHBAZI N G, ROSTAMI F, et al. A novel transdermal delivery route for energy supplements: Electrospun chitosan/polyvinyl alcohol nanofiber patches loaded with vitamin B12[J]. International Journal of Biological Macromolecules, 2023: 123187. |
61 | SOFI H S, ABDAL⁃HAY A, IVANOVSKI S, et al. Electrospun nanofibers for the delivery of active drugs through nasal, oral and vaginal mucosa: current status and future perspectives[J]. Materials Science and Engineering: C, 2020, 111: 110756. |
62 | PARDO⁃FIGUEREZ M, TENO J, LAFRAYA A, et al. Development of an electrospun patch platform technology for the delivery of carvedilol in the oral mucosa[J]. Nanomaterials, 2022, 12(3): 438. |
63 | RIVELLI G G, PEREZ A C, SILVA P H R, et al. Biodegradable electrospun nanofibers: a new approach for rhinosinusitis treatment[J]. European Journal of Pharmaceutical Sciences, 2021, 163: 105852. |
64 | AL⁃BAADANI M A, YIE K H R, AL⁃BISHARI A M, et al. Co⁃electrospinning polycaprolactone/gelatin membrane as a tunable drug delivery system for bone tissue regeneration[J]. Materials & Design, 2021, 209: 109962. |
65 | ZHANG Y, MU W, ZHANG Y, et al. Recent advances in cardiac patches: materials, preparations, and properties[J]. ACS Biomaterials Science & Engineering, 2022, 8(9): 3 659⁃3 675. |
66 | BAGHERI B, ZARRINTAJ P, SAMADI A, et al. Tissue engineering with electrospun electro⁃responsive chitosan⁃aniline oligomer/polyvinyl alcohol[J]. International Journal of Biological Macromolecules, 2020, 147: 160⁃169. |
67 | AAVANI F, KHORSHIDI S, KARKHANEH A. A concise review on drug⁃loaded electrospun nanofibres as promising wound dressings[J]. Journal of Medical Engineering & Technology, 2019, 43(1): 38⁃47. |
68 | NEZAMOLESLAMI S, FATTAHI A, NEMATI H, et al. Electrospun sandwich⁃structured of polycaprolactone/gelatin⁃based nanofibers with controlled release of ceftazidime for wound dressing[J]. International Journal of Biological Macromolecules, 2023, 236: 123819. |
69 | LIU S, WU G, WANG W, et al. In Situ Electrospinning of &ldquo dry⁃wet&rdquo conversion nanofiber dressings for wound healing[J]. Marine Drugs, 2023, 21(4): 241. |
[1] | GUAN Guotao, LIU Chenze, HE Shiquan, SONG Chaoyang, ZHANG Xiang, ZHAO Na, WANG Chao. Preparation and properties of antibacterial biodegradable poly (lactic acid) membrane [J]. China Plastics, 2023, 37(9): 8-13. |
[2] | WANG Rongrong, JIANG Tao, SUN Shaoyang, ZHOU Zhou, WANG Xiang, SHEN Ying, XING Jian. Preparation and performance of electrospun polyimide/multi⁃wall carbon nanotubes hybrid nanofibers [J]. China Plastics, 2023, 37(12): 23-28. |
[3] | HE Xuetao, ZHANG Yi, MO Zhenyu, LI Changjin, WANG Shuo, YANG Weimin, LI Haoyi. Preparation process of PBAT fiber membrane by melt differential electrospinning [J]. China Plastics, 2022, 36(12): 1-5. |
[4] | WANG Pei, NIU Lili, LI Jingyu, GENG Hongmei. Preparation and performance analysis of porous scaffold materials with sustained release activity [J]. China Plastics, 2022, 36(11): 73-78. |
[5] | AN Ying, LIU Yuliang, TAN Jing, YANG Weiming, YAN Hua, LI Haoyi. Research progress in polymer centrifugal electrospinning [J]. China Plastics, 2022, 36(1): 172-177. |
[6] | LIU Yuan, NIE Shengqiang, ZHANG Chunmei, WANG Yi, XIE Xiangyu, LUO Jun. Research on Preparation and Electrochemical Properties of Flexible Carbon Nanofiber Membrane Derived from PAN/Benzoxazine [J]. China Plastics, 2021, 35(2): 34-40. |
[7] | Man LI, Dingsheng WU, Jiali LI, Jinyan HU, Kefu WANG, Quan FENG. An Adhesive Material with Framework Structure Based on Ethylene⁃vinyl Acetate Copolymer Nanofibers [J]. China Plastics, 2020, 34(6): 34-39. |
[8] | Xiaolong LU, Xuanyu LIU, Enpu DING, Beibei ZHANG, Xiang YU, Gang QIN. Preparation and Performance Investigation of PAN/TiO2 Nanofiber Membranes [J]. China Plastics, 2020, 34(4): 30-34. |
[9] | . Properties of PP Fibers Prepared by Melt Differential Electrospinning with Supercritical CO2 [J]. China Plastics, 2016, 30(06): 70-73 . |
[10] | Haoyi LI Yumei DING . Effect of Different Electrodes on Electric Field and Fibers in Melt Electrospinning [J]. China Plastics, 2014, 28(02): 64-68 . |
[11] | . Research Progress in Fabrication of Biodegradable Polycaprolactone Foams [J]. China Plastics, 2013, 27(02): 7-13 . |
[12] | SHU Jing Xiaojing LI ZHAO DAbiao. Research Progress in Chitosan-based Intelligent Hydrogels [J]. China Plastics, 2010, 24(09): 6-10 . |
[13] | XU Zhi-Juan, LIN Xue-chun, ZHOU Jian-guo. Preliminary Research on Needleless electrospinning for fabricating polymer nanofibres [J]. China Plastics, 2009, 23(08): 7-12 . |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||