京ICP备13020181号-2
© 《China Plastics》
© 《China Plastics》
China Plastics ›› 2024, Vol. 38 ›› Issue (12): 19-23.DOI: 10.19491/j.issn.1001-9278.2024.12.003
• Materials and Properties • Previous Articles Next Articles
LAN Qian, ZHU Ping(), GUO Hongjiang
Received:
2024-04-01
Online:
2024-12-26
Published:
2024-12-25
CLC Number:
LAN Qian, ZHU Ping, GUO Hongjiang. Research progress in oil⁃water separation nanofiber membranes based on electrospinning technology[J]. China Plastics, 2024, 38(12): 19-23.
聚合物 | 添加物 | WCA /° | 分离效率/% | 通量/L·m-2·h-1 | 参考文献 |
---|---|---|---|---|---|
PVDF | SiO2 | 161.4 | >99 | — | [ |
纤维素硬脂酰酯(CSE) | 155 | 97.6 | 2 715 | [ | |
氟化二氧化硅(F⁃SiO2) | 129.2 | 99.75 | 3 700.4 | [ | |
ZnO、单宁酸(TA)、 正十二烷基硫醇(DT) | 156.5 | >99 | 1 008.88 | [ | |
多壁碳纳米管(MWCNT) | 152 | >99 | 9 270 | [ | |
PS | 石墨烯、氟化硅烷(SiF) | 154 | — | — | [ |
MWCNT、SiF | 161 | — | 693 | [ | |
PLA | 聚二甲基硅氧烷(PDMS)、SiO2 NPs | 151.8±1.3 | 99.9 | >12 000 | [ |
γ⁃Fe2O3 | 148 | — | 2 925 | [ | |
右旋聚乳(PDLA)、γ⁃Fe2O3 | 156.2 | — | 3 401.4 | [ | |
PAN | 高岭土 | 143.39 | >95 | 1 960.1 | [ |
PMMA | PDMS | 154 | 99.5 | 2 047 | [ |
PET | PDMS | 149.7 | >98 | 20 000 | [ |
聚合物 | 添加物 | WCA /° | 分离效率/% | 通量/L·m-2·h-1 | 参考文献 |
---|---|---|---|---|---|
PVDF | SiO2 | 161.4 | >99 | — | [ |
纤维素硬脂酰酯(CSE) | 155 | 97.6 | 2 715 | [ | |
氟化二氧化硅(F⁃SiO2) | 129.2 | 99.75 | 3 700.4 | [ | |
ZnO、单宁酸(TA)、 正十二烷基硫醇(DT) | 156.5 | >99 | 1 008.88 | [ | |
多壁碳纳米管(MWCNT) | 152 | >99 | 9 270 | [ | |
PS | 石墨烯、氟化硅烷(SiF) | 154 | — | — | [ |
MWCNT、SiF | 161 | — | 693 | [ | |
PLA | 聚二甲基硅氧烷(PDMS)、SiO2 NPs | 151.8±1.3 | 99.9 | >12 000 | [ |
γ⁃Fe2O3 | 148 | — | 2 925 | [ | |
右旋聚乳(PDLA)、γ⁃Fe2O3 | 156.2 | — | 3 401.4 | [ | |
PAN | 高岭土 | 143.39 | >95 | 1 960.1 | [ |
PMMA | PDMS | 154 | 99.5 | 2 047 | [ |
PET | PDMS | 149.7 | >98 | 20 000 | [ |
聚合物 | 添加物 | UWOCA/° | 分离效率/% | 通量/L·m-2·h-1 | 参考文献 |
---|---|---|---|---|---|
PAN | 聚乙烯吡咯烷酮(PVP) | 160 | >97 | 6 700 | [ |
氧化石墨烯(GO)、SiO2 NPs | 131 | >98 | 500 | [ | |
ZnO | >159 | >98 | 7 349±200 | [ | |
UiO⁃66⁃NH2 | 159.4 | 99.5 | 1773.8 | [ | |
PVDF | 壳聚糖(CS)、GO | 154.6 | >99 | 31 673±1 447 | [ |
PES | 含水二氧化锰(HMO) NPs | — | 95.42 | >3 380 | [ |
PVA | 聚多巴胺(PDA)、SiO2 NPs | >152 | >99.2 | 4 413.96 | [ |
聚合物 | 添加物 | UWOCA/° | 分离效率/% | 通量/L·m-2·h-1 | 参考文献 |
---|---|---|---|---|---|
PAN | 聚乙烯吡咯烷酮(PVP) | 160 | >97 | 6 700 | [ |
氧化石墨烯(GO)、SiO2 NPs | 131 | >98 | 500 | [ | |
ZnO | >159 | >98 | 7 349±200 | [ | |
UiO⁃66⁃NH2 | 159.4 | 99.5 | 1773.8 | [ | |
PVDF | 壳聚糖(CS)、GO | 154.6 | >99 | 31 673±1 447 | [ |
PES | 含水二氧化锰(HMO) NPs | — | 95.42 | >3 380 | [ |
PVA | 聚多巴胺(PDA)、SiO2 NPs | >152 | >99.2 | 4 413.96 | [ |
1 | Bai L, Wang X, Sun X, et al. Enhanced superhydrophobicity of electrospun carbon nanofiber membranes by hydrothermal growth of ZnO nanorods for oil⁃water separation[J]. Arabian Journal of Chemistry, 2023, 16(3): 104523. |
2 | 廖海全,吴然昊,汤秀华,等.离心作用下疏水不锈钢网的油水分离性能[J].广州化工,2022,50(18):73⁃75. |
3 | Duan M, He Z, Wang X, et al. A novel interface⁃active cationic flocculant for the oil⁃water separation of oily wastewater produced from polymer flooding[J]. Journal of Molecular Liquids, 2019, 286: 110868. |
4 | 傅海林. 聚结浮选法用于化学驱污水除油的试验研究[D].东北石油大学,2024. |
5 | Hao M, Zhang T, Hu X, et al. Facile, green and scalable preparation of low⁃cost PET⁃PVDF felts for oil absorption and oil/water separation[J]. Journal of Hazardous Materials, 2023, 448: 130804. |
6 | Bai L, Wang X, Guo X, et al. Superhydrophobic electrospun carbon nanofiber membrane decorated by surfactant⁃assisted in⁃situ growth of ZnO for oil–water separation[J]. Applied Surface Science, 2023, 622: 156938. |
7 | Lu J, Cao M, He X, et al. Electrospun hierarchically channeled polyacrylonitrile nanofibrous membrane for wastewater recovery[J]. Journal of Cleaner Production, 2022, 361: 132167. |
8 | Zhuo L, Zhang X, Jiang J, et al. Electrospinning preparation and characterization testing analysis of nanofiber biofilms[J]. AIP Advances, 2024, 14(2). |
9 | 闫 浩. PVDF/SMA⁃g⁃F127膜的制备及其油水分离性能研究[D].天津工业大学,2022. |
10 | Yue Y, Mukai Y. Electrospun hierarchically structured nanofibrous membrane for highly efficient oil⁃in⁃water emulsion coalescence separation[J]. Separation and Purification Technology, 2023, 322: 124331. |
11 | 刘 慧. 静电纺丝醋酸纤维素复合纳米纤维膜制备及其抗菌性能研究[D].燕山大学,2023. |
12 | 杜春晓. 静电纺丝PVDF复合膜的表面亲水改性及其油水分离性能研究[D].东华大学,2023. |
13 | 沈宝生.基于点击化学的油水分离用静电纺PAN膜的制备及性能研究[D].东华大学,2022. |
14 | 刘 洋, 赵立新, 孙浩天, 等. 超亲水⁃水下疏油铜网润湿性及油水分离研究[J]. Lubrication Engineering (0254⁃0150), 2022, 47(5). |
15 | Chen R, Liu J, Wang X, et al. Electrospun fibrous membrane with controlled hierarchical structure and wettability for effective emulsion separation[J]. Separation and Purification Technology, 2021, 260: 118246. |
16 | Hu Y, Lin X, Liu D, et al. Electrospun polymethyl methacrylate fibers⁃based membrane with heterogeneous structure achieving a full⁃particle size separation of oil⁃water emulsion[J]. Journal of Membrane Science, 2023, 680: 121716. |
17 | He L, Lei W, Liu D. One⁃step facile fabrication of mechanical strong porous boron nitride nanosheets⁃polymer electrospun nanofibrous membranes for repeatable emulsified oil/water separation[J]. Separation and Purification Technology, 2021, 264: 118446. |
18 | Liang Y, Yang E, Kim M, et al. Lotus leaf⁃like SiO2 nanofiber coating on polyvinylidene fluoride nanofiber membrane for water⁃in⁃oil emulsion separation and antifouling enhancement[J]. Chemical Engineering Journal, 2023, 452: 139710. |
19 | Zhao M, Hui L, Gao Y, et al. Electrospun PVDF⁃based cellulose stearoyl ester nanocomposites for effective separation of water⁃in⁃oil emulsions[J]. Industrial Crops and Products, 2024, 210: 118140. |
20 | Yang Y, Guo Z, Li Y, et al. Electrospun rough PVDF nanofibrous membranes via introducing fluorinated SiO2 for efficient oil⁃water emulsions coalescence separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 650: 129646. |
21 | He G, Wan M, Wang Z, et al. Fabrication of firm, superhydrophobic and antimicrobial PVDF@ ZnO@ TA@ DT electrospun nanofibrous membranes for emulsion separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 662: 130962. |
22 | Wang K, Zhang T C, Wei B, et al. Durable CNTs reinforced porous electrospun superhydrophobic membrane for efficient gravity driven oil/water separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 608: 125342. |
23 | Nueraji M, Toktarbay Z, Ardakkyzy A, et al. Mechanically⁃robust electrospun nanocomposite fiber membranes for oil and water separation[J]. Environmental Research, 2023, 220: 115212. |
24 | Hao W, Zhong Y, Yang Q, et al. Superhydrophobic and breathable polydimethylsiloxane/nano⁃SiO2@ polylactic acid electrospun membrane with core⁃sheath fiber structure[J]. Progress in Organic Coatings, 2024, 187: 108126. |
25 | Zhang D, X Z, Huang T, et al. Electrospun fibrous membranes with dual⁃scaled porous structure: super hydrophobicity, super lipophilicity, excellent water adhesion, and anti⁃icing for highly efficient oil adsorption/separation[J]. ACS applied materials & interfaces, 2019, 11(5): 5 073⁃5 083. |
26 | Deng Y, Zhang N, Huang T, et al. Constructing tubular/porous structures toward highly efficient oil/water separation in electrospun stereocomplex polylactide fibers via coaxial electrospinning technology[J]. Applied Surface Science, 2022, 573: 151619. |
27 | Zhang T, Zhang C, Zhao G, et al. Electrospun composite membrane with superhydrophobic⁃superoleophilic for efficient water⁃in⁃oil emulsion separation and oil adsorption[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 602: 125158. |
28 | Tsai Y T, Maggay I V, Venault A, et al. Fluorine⁃free and hydrophobic/oleophilic PMMA/PDMS electrospun nanofibrous membranes for gravity⁃driven removal of water from oil⁃rich emulsions[J]. Separation and Purification Technology, 2021, 279: 119720. |
29 | Doan H N, Vo P P, Hayashi K, et al. Recycled PET as a PDMS⁃Functionalized electrospun fibrous membrane for oil⁃water separation[J]. Journal of Environmental Chemical Engineering, 2020, 8(4): 103921. |
30 | Ren W, Pan J, Gai W, et al. Fabrication and characterization of PVDF⁃CTFE/SiO2 electrospun nanofibrous membranes with micro and nano⁃rough structures for efficient oil⁃water separation[J]. Separation and Purification Technology, 2023, 311: 123228. |
31 | Zhang J, Ge J, Si Y, et al. Taro leaf⁃inspired and superwettable nanonet⁃covered nanofibrous membranes for high⁃efficiency oil purification[J]. Nanoscale Horizons, 2019, 4(5): 1 174⁃1 184. |
32 | Du C, Wang Z, Liu G, et al. One⁃step electrospinning PVDF/PVP⁃TiO2 hydrophilic nanofiber membrane with strong oil⁃water separation and anti⁃fouling property[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 624: 126790. |
33 | Lu J, Cao M, He X, et al. Electrospun hierarchically channeled polyacrylonitrile nanofibrous membrane for wastewater recovery[J]. Journal of Cleaner Production, 2022, 361: 132167. |
34 | Ebrahimi F, Nabavi S R, Omrani A. Fabrication of hydrophilic special sandwich structure of PAN/GO/SiO2 electrospun membrane decorated with SiO2 nanoparticles for oil/water separation[J]. Journal of Water Process Engineering, 2022, 48: 102926. |
35 | Ahmed F U, Purkayastha D D. Superhydrophilic ZnO nano⁃needle decorated over nanofibrous PAN membrane and its application towards oil/water separation[J]. Journal of Environmental Chemical Engineering, 2023, 11(6): 111166. |
36 | Cao M, Xiao F, Yang Z, et al. Purification of oil⁃containing emulsified wastewater via PAN nanofiber membrane loading PVP⁃UiO-66⁃NH2 [J]. Separation and Purification Technology, 2022, 297: 121514. |
37 | Mehranbod N, Khorram M, Azizi S, et al. Modification and superhydrophilization of electrospun polyvinylidene fluoride membrane using graphene oxide⁃chitosan nanostructure and performance evaluation in oil/water separation[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 106245. |
38 | Al⁃Husaini I S, Yusoff A R M, Wirzal M D H. Efficient oil/water separation using superhydrophilic polyethersulfone electrospun nanofibrous ultrafiltration membranes[J]. Journal of Environmental Chemical Engineering, 2022, 10(5): 108341. |
39 | Zhong D, Wang X, Wang J. Green electrospun poly (vinyl alcohol)/silicon dioxide nanofibrous membrane coated with polydopamine in the presence of strong oxidant for effective separation of surfactant⁃stabilized oil⁃in⁃water emulsion[J]. Surface and Coatings Technology, 2023, 460: 129421. |
40 | Mohamadreza S, Majid A, Saeedeh M, et al.Super⁃hydrophilic electrospun PAN nanofibrous membrane modified with alkaline treatment and ultrasonic⁃assisted PANI in⁃situ polymerization for highly efficient gravity⁃driven oil/water separation[J].Separation and Purification Technology,2023,309. |
41 | Shakiba M, Abdouss M, Mazinani S, et al. Super⁃hydrophilic electrospun PAN nanofibrous membrane modified with alkaline treatment and ultrasonic⁃assisted PANI in⁃situ polymerization for highly efficient gravity⁃driven oil/water separation[J]. Separation and Purification Technology, 2023, 309: 123032. |
42 | Wanke D, da Silva A, Costa C. Modification of PVDF hydrophobic microfiltration membrane with a layer of electrospun fibers of PVP⁃co⁃PMMA: increased fouling resistance[J]. Chemical Engineering Research and Design, 2021, 171: 268⁃276. |
43 | Cheng B, Yan S, Li Y, et al. In⁃situ growth of robust and superhydrophilic nano⁃skin on electrospun Janus nanofibrous membrane for oil/water emulsions separation[J]. Separation and Purification Technology, 2023, 315: 123728. |
44 | Xiao Y, Xiao F, Ji W, et al. Bioinspired Janus membrane of polyacrylonitrile/poly (vinylidene fluoride)@ poly (vinylidene fluoride)⁃methyltriethoxysilane for oil⁃water separation[J]. Journal of Membrane Science, 2023, 687: 122090. |
45 | Xu J, Xiong Q, Liu Q, et al. Sustainable recycling of waste poly (vinylidene fluoride) and rational design of Janus membrane with superhydrophilic/hydrophobic asymmetric wettability for efficient separation of surfactant⁃stabilized water⁃in⁃oil and oil⁃in⁃water emulsions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 684: 133237. |
46 | 陈富有,赵雅雯,马 慧,等.pH和温度双响应性的微凝胶复合膜的制备及油水分离性能研究[J].膜科学与技术,2023,43(05):106⁃117+126. |
47 | 祖 鹏,袁鹏程,王曙光,等.g⁃C3N4/TiO2⁃PVDF光响应膜界面实现高效油水分离:不同暴露晶面诱导的渗透性和选择性差异及性能[J].高等学校化学学报,2023,44(06):129⁃138. |
48 | Dou Y L, Yue X, Lv C J, et al. Dual⁃responsive polyacrylonitrile⁃based electrospun membrane for controllable oil⁃water separation[J]. Journal of Hazardous Materials, 2022, 438: 129565. |
[1] | CHEN Xiaoqing, LIANG Jiahao, XIE Wenyu, SHAO Weiming, WANG Ruzhen, FU Wen, CAI Yebin. Preparation of electrospun photothermal conversion nanofibers and their application in solar⁃driven interface evaporation [J]. China Plastics, 2024, 38(5): 129-136. |
[2] | CHENG En, YE Donglei, CHENG Debao, TIAN Huafeng, ZHAO Xiaoying, XIANG Aimin. Gelatin⁃based electrospun nanofibers and their applications [J]. China Plastics, 2024, 38(4): 103-108. |
[3] | TAN Jing, WANG Zhi, WANG Shuo, FU Hongyan, LI Changjin, LI Haoyi, YANG Weimin, ZHANG Yang. Study on toughening modification of poly(lactic acid) melt differential electrospun fiber membrane by dendrimer [J]. China Plastics, 2024, 38(2): 7-13. |
[4] | . Research progress of oil-water separation nanofiber membranes based on electrospinning technology [J]. , 2024, (12): 0-0. |
[5] | HU Jiaai, ZHANG Yiqing, XU Jiahe, LI Qiaoli, FENG Xixi, XU Xuan, LI Xinao, NI Tianheng, HOU Lianlong, MA Haikun, SUN Guohua. Preparation and battery performance of polyimide/hydroxyethyl cellulose composite nanofiber membrane [J]. China Plastics, 2024, 38(11): 47-52. |
[6] | LI Jie, LU Yiyi, SHI Wentian, GUO Yunjie, WANG Yuke. Preparation and oil⁃water separation performance of PDMS/PVDF electrospun membranes [J]. China Plastics, 2024, 38(1): 28-34. |
[7] | ZHOU Long, DU Guoyong, DENG Chunping. Preparation and performance of superhydrophobic⁃superlipophilic melamine sponge for oil⁃water separation [J]. China Plastics, 2023, 37(9): 28-38. |
[8] | GUAN Guotao, LIU Chenze, HE Shiquan, SONG Chaoyang, ZHANG Xiang, ZHAO Na, WANG Chao. Preparation and properties of antibacterial biodegradable poly (lactic acid) membrane [J]. China Plastics, 2023, 37(9): 8-13. |
[9] | ZHOU Long, DU Guoyong, DENG Chunping. Preparation and oil⁃water separation performance of superhydrophilic⁃underwater superoleophobic polyurethane sponge [J]. China Plastics, 2023, 37(8): 28-37. |
[10] | WANG Rongrong, JIANG Tao, SUN Shaoyang, ZHOU Zhou, WANG Xiang, SHEN Ying, XING Jian. Preparation and performance of electrospun polyimide/multi⁃wall carbon nanotubes hybrid nanofibers [J]. China Plastics, 2023, 37(12): 23-28. |
[11] | LI Haoyi, WANG Yiming, DING Xi, ZHANG Yi, BAI Jingyu, LI Feifei, ZHANG Yueyong, YANG Weimin. Research progress in electrospinning drug loading and its applications [J]. China Plastics, 2023, 37(12): 60-69. |
[12] | WANG Xiaonan, FU Jingao, CHEN Sisi, GAO Hainan, CAI Yudong. Research progress in hydrogel for oilfield development [J]. China Plastics, 2023, 37(10): 101-110. |
[13] | SONG Danyang, ZHENG Hongjuan, LI Yilong. Research progress in PLA⁃based oil⁃water separation materials [J]. China Plastics, 2022, 36(9): 187-192. |
[14] | ZHOU Shuyi, ZHU Min, LIU Yiying, CAO Shuhui, CAI Qixuan, NIE Hui, ZHANG Yuxia, ZHOU Hongfu. Research progress in polymer⁃based hemostatic materials [J]. China Plastics, 2022, 36(7): 74-84. |
[15] | HE Xuetao, ZHANG Yi, MO Zhenyu, LI Changjin, WANG Shuo, YANG Weimin, LI Haoyi. Preparation process of PBAT fiber membrane by melt differential electrospinning [J]. China Plastics, 2022, 36(12): 1-5. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||